Asymptotic Behaviour for a Nonlinear Schrödinger Equation in Domains with Moving Boundaries

被引:0
|
作者
Vanilde Bisognin
Celene Buriol
Marcio V. Ferreira
Mauricio Sepúlveda
Octavio Vera
机构
[1] Centro Universitario Franciscano,Departamento de Matemática
[2] Universidade Federal de Santa Maria,CI²MA and Departamento de Ingeniería Matemática
[3] Universidad de Concepción,Departamento de Matemática
[4] Universidad del Bío-Bío,undefined
来源
关键词
Schrödinger equation; Stabilization; Moving boundary; 35K60; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Schrödinger equation in a time-dependent domain Qτ of ℝ2 given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\tau} - i u_{\varepsilon\varepsilon} + |u|^{2} u + \gamma v=0. $$\end{document} We prove the well-posedness of the above model and analyze the behaviour of the solution as t→+∞. We consider two situations: the conservative case (γ=0) and the dissipative case (γ>0). In both situations the existence of solutions are proved using the Galerkin method and the stabilization of solutions are obtained considering multiplier techniques.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 50 条
  • [21] Asymptotic value distribution for solutions of the Schrödinger equation
    Breimesser S.V.
    Pearson D.B.
    Mathematical Physics, Analysis and Geometry, 2000, 3 (4) : 385 - 403
  • [22] The asymptotic property for nonlinear fourth-order Schrödinger equation with gain or loss
    Cuihua Guo
    Boundary Value Problems, 2015
  • [23] Asymptotic behavior for a dissipative nonlinear Schrödinger equation with time-dependent damping
    Bamri, Chourouk
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [24] Asymptotic behavior in time of solution for the cubic nonlinear Schrödinger equation on the tadpole graph
    Segata, Jun-ichi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 1977 - 1999
  • [25] Asymptotic approximations for the phase space Schrödinger equation
    Karageorge, Panos D.
    Makrakis, George N.
    arXiv, 2021,
  • [26] The stochastic nonlinear Schrödinger equation in unbounded domains and non-compact manifolds
    Fabian Hornung
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [27] Fractional Schrödinger Equation in Bounded Domains and Applications
    Mohamed Ben Chrouda
    Mediterranean Journal of Mathematics, 2017, 14
  • [28] Strichartz Estimates for the Schrödinger Equation on Polygonal Domains
    Matthew D. Blair
    G. Austin Ford
    Sebastian Herr
    Jeremy L. Marzuola
    Journal of Geometric Analysis, 2012, 22 : 339 - 351
  • [29] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [30] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256