Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica

被引:0
|
作者
Shu Wei Chou-Chen
Luis A. Barboza
Paola Vásquez
Yury E. García
Juan G. Calvo
Hugo G. Hidalgo
Fabio Sanchez
机构
[1] Universidad de Costa Rica,Centro de Investigación en Matematica Pura y Aplicada
[2] Universidad de Costa Rica,Escuela de Estadística
[3] Universidad de Costa Rica,Escuela de Matemática
[4] University of California Davis,Department of Public Health Sciences
[5] Universidad de Costa Rica,Centro de Investigaciones Geofísicas and Escuela de Física
关键词
Bayesian inference; Climate; Public Health; Spatio-temporal models; Vector-borne disease; 62F15; 62P10; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the rapid geographic spread of the Aedes mosquito and the increase in dengue incidence, dengue fever has been an increasing concern for public health authorities in tropical and subtropical countries worldwide. Significant challenges such as climate change, the burden on health systems, and the rise of insecticide resistance highlight the need to introduce new and cost-effective tools for developing public health interventions. Various and locally adapted statistical methods for developing climate-based early warning systems have increasingly been an area of interest and research worldwide. Costa Rica, a country with microclimates and endemic circulation of the dengue virus (DENV) since 1993, provides ideal conditions for developing projection models with the potential to help guide public health efforts and interventions to control and monitor future dengue outbreaks. Climate information was incorporated to model and forecast the dengue cases and relative risks using a Bayesian spatio-temporal model, from 2000 to 2021, in 32 Costa Rican municipalities. This approach is capable of analyzing the spatio-temporal behavior of dengue and also producing reliable predictions.
引用
收藏
页码:687 / 713
页数:26
相关论文
共 50 条
  • [1] Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica
    Chou-Chen, Shu Wei
    Barboza, Luis A.
    Vasquez, Paola
    Garcia, Yury E.
    Calvo, Juan G.
    Hidalgo, Hugo G.
    Sanchez, Fabio
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2023, 30 (04) : 687 - 713
  • [2] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951
  • [3] ON THE BAYESIAN ZERO-INFLATED SPATIO-TEMPORAL MODELLING OF DENGUE HEMORRHAGIC FEVER
    Sanson, Daniel R.
    Lim-Polestico, Daisy Lou
    ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 90 (01) : 35 - 58
  • [4] Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review
    Aswi, A.
    Cramb, S. M.
    Moraga, P.
    Mengersen, K.
    EPIDEMIOLOGY AND INFECTION, 2019, 147
  • [5] Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling
    Aswi, Aswi
    Cramb, Susanna
    Duncan, Earl
    Hu, Wenbiao
    White, Gentry
    Mengersen, Kerrie
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 33
  • [6] Additive bayes spatio-temporal model with INLA for west Java rainfall prediction
    Statistics Department, Faculty of Mathematics and Natural Sciences, IPB University, Bogor Agricultural University, Jawa Barat
    16680, Indonesia
    不详
    16680, Indonesia
    不详
    11480, Indonesia
    Procedia Comput. Sci., (414-419):
  • [7] Spatio-temporal dengue risk modelling in the south of Thailand: a Bayesian approach to dengue vulnerability
    Abdulsalam, Fatima Ibrahim
    Antunez, Pablo
    Jawjit, Warit
    PEERJ, 2023, 11
  • [8] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):
  • [9] Additive Bayes Spatio-temporal Model with INLA for West Java']Java Rainfall Prediction
    Rachmawati, Ro'fah Nur
    Djuraidah, Anik
    Wigena, Aji Hamim
    Mangku, I. Wayan
    4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 414 - 419
  • [10] Spatio-temporal occupancy models with INLA
    Belmont, Jafet
    Martino, Sara
    Illian, Janine
    Rue, Havard
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (11): : 2087 - 2100