Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise

被引:0
|
作者
Z. Brzeźniak
S. Cerrai
M. Freidlin
机构
[1] The University of York,Department of Mathematics
[2] University of Maryland,Department of Mathematics
来源
关键词
60H15; 60F10; 35Q30; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
We are dealing with the Navier-Stokes equation in a bounded regular domain O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, perturbed by an additive Gaussian noise ∂wQδ/∂t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial w^{Q_\delta }/\partial t$$\end{document}, which is white in time and colored in space. We assume that the correlation radius of the noise gets smaller and smaller as δ↘0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \searrow 0$$\end{document}, so that the noise converges to the white noise in space and time. For every δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document} we introduce the large deviation action functional STδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^\delta _{T}$$\end{document} and the corresponding quasi-potential Uδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\delta $$\end{document} and, by using arguments from relaxation and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence we show that Uδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\delta $$\end{document} converges to U=U0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=U_0$$\end{document}, in spite of the fact that the Navier-Stokes equation has no meaning in the space of square integrable functions, when perturbed by space-time white noise. Moreover, in the case of periodic boundary conditions the limiting functional U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} is explicitly computed. Finally, we apply these results to estimate of the asymptotics of the expected exit time of the solution of the stochastic Navier-Stokes equation from a basin of attraction of an asymptotically stable point for the unperturbed system.
引用
收藏
页码:739 / 793
页数:54
相关论文
共 50 条
  • [31] Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity
    Liang, Siyu
    Zhang, Ping
    Zhu, Rongchan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 473 - 508
  • [32] Inviscid limit of stochastic damped 2D Navier-Stokes equations
    Bessaih, Hakima
    Ferrario, Benedetta
    [J]. NONLINEARITY, 2014, 27 (01) : 1 - 15
  • [33] The Kolmogorov equation associated to the Stochastic Navier-Stokes equations in 2D
    Barbu, V
    Da Prato, G
    Debussche, A
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (02) : 163 - 182
  • [34] 2D backward stochastic Navier-Stokes equations with nonlinear forcing
    Qiu, Jinniao
    Tang, Shanjian
    You, Yuncheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (01) : 334 - 356
  • [35] Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing
    Hairer, Martin
    Mattingly, Jonathan C.
    [J]. ANNALS OF MATHEMATICS, 2006, 164 (03) : 993 - 1032
  • [36] Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations
    Goldys, B
    Maslowski, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) : 230 - 255
  • [37] Ergodicity of the 2D Navier-Stokes equations with degenerate multiplicative noise
    Dong, Zhao
    Peng, Xu-hui
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 97 - 118
  • [38] Ergodicity of the 2D Navier-Stokes Equations with Degenerate Multiplicative Noise
    Zhao DONG
    Xu-hui PENG
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (01) : 97 - 118
  • [39] Hyperviscous stochastic Navier-Stokes equations with white noise invariant measure
    Gubinelli, M.
    Turra, M.
    [J]. STOCHASTICS AND DYNAMICS, 2020, 20 (06)
  • [40] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274