Stable surfaces and free boundary marginally outer trapped surfaces

被引:0
|
作者
Aghil Alaee
Martin Lesourd
Shing-Tung Yau
机构
[1] Clark University,Department of Mathematics and Computer Science
[2] Harvard University,Center of Mathematical Sciences and Applications
[3] Harvard University,Black Hole Initiative
[4] Harvard University,Department of Mathematics
关键词
53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We explore various notions of stability for surfaces embedded and immersed in spacetimes and initial data sets. The interest in such surfaces lies in their potential to go beyond the variational techniques which often underlie the study of minimal and CMC surfaces. We prove two versions of Christodoulou–Yau estimate for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {H}}$$\end{document}-stable surfaces, a Cohn-Vossen type inequality for non-compact stable marginally outer trapped surface (MOTS), and a global theorem on the topology of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {H}}$$\end{document}-stable surfaces. Moreover, we give a definition of capillary stability for MOTS with boundary. This notion of stability leads to an area upper bound inequality and a local splitting theorem for free boundary stable MOTS. Finally, we establish an index estimate and a diameter estimate for free boundary MOTS. These are straightforward generalizations of Chen–Fraser–Pang and Carlotto–Franz results for free boundary minimal surfaces, respectively.
引用
收藏
相关论文
共 50 条
  • [31] Marginally outer trapped surfaces in de Sitter space by low-dimensional geometries
    Musso, Emilio
    Nicolodi, Lorenzo
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 168 - 186
  • [32] Marginally trapped surfaces in spherical gravitational collapse
    Chatterjee, Ayan
    Ghosh, Amit
    Jaryal, Suresh C.
    [J]. PHYSICAL REVIEW D, 2020, 102 (06):
  • [33] Marginally trapped surfaces in spaces of oriented geodesics
    Georgiou, Nikos
    Guilfoyle, Brendan
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2014, 82 : 1 - 12
  • [34] BLACK HOLES, MARGINALLY TRAPPED SURFACES AND QUASI-MINIMAL SURFACES
    Chen, Bang-Yen
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (04): : 313 - 341
  • [35] Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions
    Pilkington, Terry
    Melanson, Alexandre
    Fitzgerald, Joseph
    Booth, Ivan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
  • [36] MARGINALLY TRAPPED SURFACES AND KALUZA-KLEIN THEORY
    Chen, Bang-Yen
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2009, 2 (01): : 1 - 16
  • [37] Rigidity of marginally trapped surfaces and the topology of black holes
    Galloway, Gregory J.
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (01) : 217 - 229
  • [38] Causal description of marginally trapped surfaces in D dimensions
    Raviteja, Konka
    Haque, Asrarul
    Gutti, Sashideep
    [J]. PHYSICAL REVIEW D, 2021, 103 (12)
  • [39] Outer trapped surfaces in Vaidya spacetimes
    Ben-Dov, Ishai
    [J]. PHYSICAL REVIEW D, 2007, 75 (06):
  • [40] Outer trapped surfaces and their apparent horizon
    Kriele, M
    Hayward, SA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) : 1593 - 1604