Stable surfaces and free boundary marginally outer trapped surfaces

被引:0
|
作者
Aghil Alaee
Martin Lesourd
Shing-Tung Yau
机构
[1] Clark University,Department of Mathematics and Computer Science
[2] Harvard University,Center of Mathematical Sciences and Applications
[3] Harvard University,Black Hole Initiative
[4] Harvard University,Department of Mathematics
关键词
53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We explore various notions of stability for surfaces embedded and immersed in spacetimes and initial data sets. The interest in such surfaces lies in their potential to go beyond the variational techniques which often underlie the study of minimal and CMC surfaces. We prove two versions of Christodoulou–Yau estimate for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {H}}$$\end{document}-stable surfaces, a Cohn-Vossen type inequality for non-compact stable marginally outer trapped surface (MOTS), and a global theorem on the topology of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {H}}$$\end{document}-stable surfaces. Moreover, we give a definition of capillary stability for MOTS with boundary. This notion of stability leads to an area upper bound inequality and a local splitting theorem for free boundary stable MOTS. Finally, we establish an index estimate and a diameter estimate for free boundary MOTS. These are straightforward generalizations of Chen–Fraser–Pang and Carlotto–Franz results for free boundary minimal surfaces, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Uniqueness theorem for static spacetimes containing marginally outer trapped surfaces
    Carrasco, Alberto
    Mars, Marc
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (17)
  • [22] Unstable marginally outer trapped surfaces in static spherically symmetric spacetimes
    Booth, Ivan
    Kunduri, Hari K.
    O'Grady, Anna
    [J]. PHYSICAL REVIEW D, 2017, 96 (02)
  • [23] Interior marginally outer trapped surfaces of spherically symmetric black holes
    Hennigar, Robie A.
    Chan, Kam To Billy
    Newhook, Liam
    Booth, Ivan
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)
  • [24] Exotic marginally outer trapped surfaces in rotating spacetimes of any dimension
    Booth, Ivan
    Chan, Kam To Billy
    Hennigar, Robie A.
    Kunduri, Hari
    Muth, Sarah
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (09)
  • [25] Marginally trapped surfaces and AdS/CFT
    Grado-White, Brianna
    Marolf, Donald
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [26] MARGINALLY TRAPPED SURFACES IN A SIMPLICIAL SPACE
    BREWIN, L
    [J]. PHYSICAL REVIEW D, 1988, 38 (10): : 3020 - 3022
  • [27] Marginally trapped surfaces and AdS/CFT
    Brianna Grado-White
    Donald Marolf
    [J]. Journal of High Energy Physics, 2018
  • [28] Isotropy and marginally trapped surfaces in a spacetime
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (13)
  • [29] The marginally trapped surfaces in spheroidal spacetimes
    Rahim, Rehana
    Giusti, Andrea
    Casadio, Roberto
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (01):
  • [30] The time evolution of marginally trapped surfaces
    Andersson, Lars
    Mars, Marc
    Metzger, Jan
    Simon, Walter
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (08)