A Bi-Hamiltonian Supersymmetric Geodesic Equation

被引:0
|
作者
Jonatan Lenells
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
关键词
37K10; 17A70; supersymmetry; integrable systems; Hunter–Saxton equation;
D O I
暂无
中图分类号
学科分类号
摘要
A supersymmetric extension of the Hunter–Saxton equation is constructed. We present its bi-Hamiltonian structure and show that it arises geometrically as a geodesic equation on the space of superdiffeomorphisms of the circle that leave a point fixed endowed with a right-invariant metric.
引用
收藏
页码:55 / 63
页数:8
相关论文
共 50 条
  • [41] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [42] Boussinesq hierarchy and bi-Hamiltonian geometry
    Ortenzi, Giovanni
    Pedroni, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [43] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [44] Bi-Hamiltonian formalism: A constructive approach
    Smirnov, RG
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (04) : 333 - 347
  • [45] On the Bi-Hamiltonian Geometry of WDVV Equations
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2015, 105 : 1135 - 1163
  • [46] IS A BI-HAMILTONIAN SYSTEM NECESSARILY INTEGRABLE
    KUPERSHMIDT, BA
    PHYSICS LETTERS A, 1987, 123 (02) : 55 - 59
  • [47] Inverse bi-Hamiltonian separable chains
    M. Błaszak
    Theoretical and Mathematical Physics, 2000, 122 : 140 - 150
  • [48] A bi-Hamiltonian nature of the Gaudin algebras
    Yakimova, Oksana
    ADVANCES IN MATHEMATICS, 2023, 412
  • [49] BI-HAMILTONIAN FIELD GARNIER SYSTEM
    BLASZAK, M
    PHYSICS LETTERS A, 1993, 174 (1-2) : 85 - 88
  • [50] Composite integrators for bi-Hamiltonian systems
    Karasozen, B.
    Computers and Mathematics with Applications, 1996, 32 (07): : 79 - 86