A Bi-Hamiltonian Supersymmetric Geodesic Equation

被引:0
|
作者
Jonatan Lenells
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
关键词
37K10; 17A70; supersymmetry; integrable systems; Hunter–Saxton equation;
D O I
暂无
中图分类号
学科分类号
摘要
A supersymmetric extension of the Hunter–Saxton equation is constructed. We present its bi-Hamiltonian structure and show that it arises geometrically as a geodesic equation on the space of superdiffeomorphisms of the circle that leave a point fixed endowed with a right-invariant metric.
引用
收藏
页码:55 / 63
页数:8
相关论文
共 50 条
  • [21] A super mKdV equation: bi-Hamiltonian structures and Darboux transformations
    Hanyu Zhou
    Kai Tian
    XiaoXia Yang
    Pramana, 98
  • [22] A super mKdV equation: bi-Hamiltonian structures and Darboux transformations
    Zhou, Hanyu
    Tian, Kai
    Yang, Xiaoxia
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (02):
  • [23] BI-HAMILTONIAN FORMULATIONS OF THE INTERMEDIATE LONG-WAVE EQUATION
    SANTINI, PM
    INVERSE PROBLEMS, 1989, 5 (02) : 203 - 225
  • [24] Bi-Hamiltonian structure of multi-component Novikov equation
    Li, Hongmin
    Li, Yuqi
    Chen, Yong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (04) : 509 - 520
  • [25] On bi-Hamiltonian structure of two-component Novikov equation
    Li, Nianhua
    Liu, Q. P.
    PHYSICS LETTERS A, 2013, 377 (3-4) : 257 - 261
  • [26] A BI-HAMILTONIAN SYSTEM ON THE GRASSMANNIAN
    Bonechi, F.
    Qiu, J.
    Tarlini, M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 189 (01) : 1401 - 1410
  • [27] A new integrable equation with peakons and cuspons and its bi-Hamiltonian structure
    Geng, Xianguo
    Li, Ruomeng
    Xue, Bo
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 64 - 69
  • [28] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [29] The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation
    Yao, Yuqin
    Zeng, Yunbo
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (2-3) : 193 - 208
  • [30] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543