Averaging Principles for Stochastic 2D Navier–Stokes Equations

被引:0
|
作者
Peng Gao
机构
[1] Northeast Normal University,School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences
来源
关键词
Stochastic 2D Navier–Stokes equations; Averaging principle; 35Q56; 76D05; 60H15; 70K65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will establish two kinds of averaging principles for stochastic 2D Navier–Stokes equations, i.e. Bogoliubov averaging principle and Stratonovich–Khasminskii averaging principle. These averaging principles are powerful tools for studying asymptotic behavior of stochastic 2D Navier–Stokes equations.
引用
下载
收藏
相关论文
共 50 条
  • [21] Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere
    Brzezniak, Z.
    Goldys, B.
    Le Gia, Q. T.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (01) : 227 - 253
  • [22] 2D Stochastic Navier–Stokes Equations with a Time-Periodic Forcing Term
    Giuseppe Da Prato
    Arnaud Debussche
    Journal of Dynamics and Differential Equations, 2008, 20 : 301 - 335
  • [23] Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations
    Sundar, P.
    Yin, Hong
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (04) : 1216 - 1234
  • [24] Global solutions of stochastic 2D Navier-Stokes equations with Levy noise
    Dong Zhao
    Xie YinChao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07): : 1497 - 1524
  • [25] Large deviation principle for the 2D stochastic Cahn–Hilliard–Navier–Stokes equations
    Zhaoyang Qiu
    Huaqiao Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [26] SPECTRAL GAPS IN WASSERSTEIN DISTANCES AND THE 2D STOCHASTIC NAVIER-STOKES EQUATIONS
    Hairer, Martin
    Mattingly, Jonathan C.
    ANNALS OF PROBABILITY, 2008, 36 (06): : 2050 - 2091
  • [27] Convergence rates for the numerical approximation of the 2D stochastic Navier-Stokes equations
    Breit, Dominic
    Dodgson, Alan
    NUMERISCHE MATHEMATIK, 2021, 147 (03) : 553 - 578
  • [28] Malliavin calculus for highly degenerate 2D stochastic Navier-Stokes equations
    Hairer, M
    Mattingly, JC
    Pardoux, É
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 793 - 796
  • [29] A note on 2D Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (06):
  • [30] 2D constrained Navier-Stokes equations
    Brzezniak, Zdzislaw
    Dhariwal, Gaurav
    Mariani, Mauro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2833 - 2864