Semi-parametric estimation and forecasting for exogenous log-GARCH models

被引:0
|
作者
Ming Chen
Qiongxia Song
机构
[1] The University of Texas at Dallas,
来源
TEST | 2016年 / 25卷
关键词
Financial volatility; Log-GARCH; Exogenous variable; Semi-parametric regression; Spline; Quasi-likelihood estimation; 62G05; 62G08;
D O I
暂无
中图分类号
学科分类号
摘要
Advanced computing and processing techniques have yielded abundant information for financial time series forecasting. It is, therefore, natural to ask for possible extensions of time series models to accommodate the wealth of information. In this article, we develop a new model for financial volatility estimation and forecasting by incorporating exogenous covariates in a semi-parametric log-GARCH model. With additional information, we gain an increased prediction power. We propose a quasi-maximum likelihood procedure via spline smoothing technique. Consistent estimators and asymptotic normality are obtained under mild regularity conditions. Simulation experiments provide strong evidence that corroborates the asymptotic theories. Additionally, an application to SPY index data demonstrates strong competitive advantage of our model comparing with GARCH(1,1) and log-GARCH(1,1) models.
引用
收藏
页码:93 / 112
页数:19
相关论文
共 50 条
  • [41] Observed information in semi-parametric models
    Murphy, SA
    Van der Vaart, AW
    [J]. BERNOULLI, 1999, 5 (03) : 381 - 412
  • [42] Hyperbolic and semi-parametric models in finance
    Bingham, NH
    Kiesel, R
    [J]. DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 275 - 280
  • [43] Semi-parametric Models for Visual Odometry
    Guizilini, Vitor
    Ramos, Fabio
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3482 - 3489
  • [44] Semi-parametric models for satisfaction with income
    Charles Bellemare
    Bertrand Melenberg
    Arthur van Soest
    [J]. Portuguese Economic Journal, 2002, 1 (2) : 181 - 203
  • [45] Semi-parametric expected shortfall forecasting in financial markets
    Gerlach, Richard
    Chen, Cathy W. S.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (06) : 1084 - 1106
  • [46] Outliers in Semi-Parametric Estimation of Treatment Effects
    Canavire-Bacarreza, Gustavo
    Castro Penarrieta, Luis
    Ugarte Ontiveros, Darwin
    [J]. ECONOMETRICS, 2021, 9 (02)
  • [47] Semi-parametric estimation of multivariate extreme expectiles
    Beck, Nicholas
    Di Bernardino, Elena
    Mailhot, Melina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [48] FLEXIBLE PARAMETRIC AND SEMI-PARAMETRIC NONMARKOV MULTI-STATE MODELS: ESTIMATION, PREDICTION & SIMULATION
    Crowther, M. J.
    [J]. VALUE IN HEALTH, 2023, 26 (12) : S401 - S401
  • [49] Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models
    Goude, Yannig
    Nedellec, Raphael
    Kong, Nicolas
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (01) : 440 - 446
  • [50] Bayesian Semi-Parametric Realized Conditional Autoregressive Expectile Models for Tail Risk Forecasting
    Gerlach, Richard
    Wang, Chao
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (01) : 105 - 138