A Nonlocal Inverse Problem for the Two-Dimensional Heat-Conduction Equation

被引:0
|
作者
Kinash N.Y. [1 ]
机构
[1] I. Franko Lviv National University, Lviv
关键词
D O I
10.1007/s10958-018-3834-9
中图分类号
学科分类号
摘要
We consider an inverse problem of determination of the time-dependent leading coefficient of a two-dimensional heat-conduction equation with nonlocal overdetermination condition. The existence and uniqueness conditions are established for the classical solution of the analyzed problem. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:558 / 571
页数:13
相关论文
共 50 条
  • [31] The meshless method for a two-dimensional inverse heat conduction problem with a source parameter
    Cheng, Rongjun
    Cheng, Yumin
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2007, 39 (06): : 843 - 847
  • [32] Numerical solution of two-dimensional radially symmetric inverse heat conduction problem
    Qian, Zhi
    Hon, Benny Y. C.
    Xiong, Xiang Tuan
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (02): : 121 - 134
  • [33] Two-dimensional Inverse Heat Conduction Problem Using a Meshless Manifold Method
    Wei, G. F.
    Gao, H. F.
    [J]. INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 421 - 426
  • [34] Modal identification of a boundary input in the two-dimensional inverse heat conduction problem
    Rapoport, E. Ya.
    Diligenskaya, A. N.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2018, 22 (02): : 380 - 394
  • [35] Two-dimensional inverse heat conduction problem in a quarter plane: integral approach
    Anis Bel Hadj Hassin
    Lahcène Chorfi
    [J]. Journal of Applied Mathematics and Computing, 2020, 62 : 565 - 586
  • [36] A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline
    Lu, T.
    Liu, B.
    Jiang, P. X.
    Zhang, Y. W.
    Li, H.
    [J]. APPLIED THERMAL ENGINEERING, 2010, 30 (13) : 1574 - 1579
  • [37] Two-dimensional inverse heat conduction problem in a quarter plane: integral approach
    Bel Hadj Hassin, Anis
    Chorfi, Lahcene
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 565 - 586
  • [38] Numerical investigation of the stability of two-layer difference schemes for the two-dimensional heat-conduction equation
    Gulin, AV
    Yukhno, LF
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1996, 36 (08) : 1079 - 1085
  • [39] TWO-DIMENSIONAL NONLINEAR HEAT-CONDUCTION PROBLEMS IN ANISOTROPIC BODIES
    FORMALEV, VF
    [J]. HIGH TEMPERATURE, 1988, 26 (06) : 868 - 874
  • [40] A two-dimensional inverse problem for the viscoelasticity equation
    V. G. Romanov
    [J]. Siberian Mathematical Journal, 2012, 53 : 1128 - 1138