We consider a two-dimensional inverse heat conduction problem in the region {x>0,y>0}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lbrace x>0, y >0 \rbrace $$\end{document} with infinite boundary which consists to reconstruct the boundary condition f(y,t)=u(0,y,t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(y,t)=u(0,y,t)$$\end{document} on one side from the measured temperature g(y,t)=u(1,y,t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g(y,t)=u(1,y,t)$$\end{document} on accessible interior region. The numerical solution of the direct problem is computed by a boundary integral equation method. The inverse problem is equivalent to an ill-posed integral equation. For its approximation we use the regularization of Tikhonov after the mollification of the noised data gδ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_\delta $$\end{document} of exact data g. We show some numerical examples to illustrate the validity of the method.