Two-dimensional inverse heat conduction problem in a quarter plane: integral approach

被引:0
|
作者
Anis Bel Hadj Hassin
Lahcène Chorfi
机构
[1] Université de Tunis El Manar,LAMSIN, ENIT
[2] Université Badji Mokhtar de Annaba,LMA
关键词
Heat equation; Inverse problem; Integral equations; 35K05; 47A52;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a two-dimensional inverse heat conduction problem in the region {x>0,y>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace x>0, y >0 \rbrace $$\end{document} with infinite boundary which consists to reconstruct the boundary condition f(y,t)=u(0,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(y,t)=u(0,y,t)$$\end{document} on one side from the measured temperature g(y,t)=u(1,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(y,t)=u(1,y,t)$$\end{document} on accessible interior region. The numerical solution of the direct problem is computed by a boundary integral equation method. The inverse problem is equivalent to an ill-posed integral equation. For its approximation we use the regularization of Tikhonov after the mollification of the noised data gδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\delta $$\end{document} of exact data g. We show some numerical examples to illustrate the validity of the method.
引用
收藏
页码:565 / 586
页数:21
相关论文
共 50 条