A damped semismooth Newton method for the Brugnano–Casulli piecewise linear system

被引:0
|
作者
Zhe Sun
Lei Wu
Zhe Liu
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Piecewise linear system; Semismooth Newton method; Monotone convergence; 65H10; 49M15; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
The piecewise linear system is a nonsmooth but semismooth equation. In this paper, a damped semismooth Newton method is presented for solving a class of piecewise linear systems. Under appropriate conditions, both monotone convergence and finite termination properties are investigated for the proposed method.
引用
收藏
页码:569 / 589
页数:20
相关论文
共 50 条
  • [31] Decoupled semismooth newton method for optimal power flow
    Tong, Xiaojiao
    Zhang, Yongping
    Wu, Felix F.
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 240 - +
  • [32] A semismooth Newton method for nonlinear symmetric cone programming
    Kong, Lingchen
    Meng, Qingmin
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2012, 76 (02) : 129 - 145
  • [33] A semismooth Newton method for Tikhonov functionals with sparsity constraints
    Griesse, R.
    Lorenz, D. A.
    INVERSE PROBLEMS, 2008, 24 (03)
  • [34] Generalized Newton-iterative method for semismooth equations
    Zhe Sun
    Jinping Zeng
    Hongru Xu
    Numerical Algorithms, 2011, 58
  • [35] The semismooth Newton method for multicomponent reactive transport with minerals
    Kraeutle, Serge
    ADVANCES IN WATER RESOURCES, 2011, 34 (01) : 137 - 151
  • [36] A semismooth Newton method for tensor eigenvalue complementarity problem
    Zhongming Chen
    Liqun Qi
    Computational Optimization and Applications, 2016, 65 : 109 - 126
  • [37] A semismooth Newton method for tensor eigenvalue complementarity problem
    Chen, Zhongming
    Qi, Liqun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 109 - 126
  • [38] A semismooth Newton method for solving optimal power flow
    Tong, Xiaojiao
    Wu, Felix F.
    Zhang, Yongping
    Yan, Zheng
    Ni, Yixin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2007, 3 (03) : 553 - 567
  • [39] A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Milzarek, Andre
    Xiao, Xiantao
    Cen, Shicong
    Wen, Zaiwen
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2916 - 2948
  • [40] A semismooth Newton method for nonlinear symmetric cone programming
    Lingchen Kong
    Qingmin Meng
    Mathematical Methods of Operations Research, 2012, 76 : 129 - 145