A semismooth Newton method for Tikhonov functionals with sparsity constraints

被引:72
|
作者
Griesse, R. [1 ]
Lorenz, D. A. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Univ Bremen, Zentrum Technomath, D-28334 Bremen, Germany
关键词
D O I
10.1088/0266-5611/24/3/035007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minimization problems in l(2) for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l(1) penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical examples are provided which show that our method compares favorably with existing approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A global minimization algorithm for Tikhonov functionals with sparsity constraints
    Wang, Wei
    Anzengruber, Stephan W.
    Ramlau, Ronny
    Han, Bo
    [J]. APPLICABLE ANALYSIS, 2015, 94 (03) : 580 - 611
  • [2] Semismooth Newton method for quadratic programs with bound constraints
    A. N. Daryina
    A. F. Izmailov
    [J]. Computational Mathematics and Mathematical Physics, 2009, 49 : 1706 - 1716
  • [3] Semismooth Newton method for quadratic programs with bound constraints
    Daryina, A. N.
    Izmailov, A. F.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (10) : 1706 - 1716
  • [4] Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints
    A. F. Izmailov
    A. L. Pogosyan
    M. V. Solodov
    [J]. Computational Optimization and Applications, 2012, 51 : 199 - 221
  • [5] GRADIENT DESCENT FOR TIKHONOV FUNCTIONALS WITH SPARSITY CONSTRAINTS: THEORY AND NUMERICAL COMPARISON OF STEP SIZE RULES
    Lorenz, Dirk A.
    Maass, Peter
    Muoi, Pham Q.
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 437 - 463
  • [6] Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints
    Izmailov, A. F.
    Pogosyan, A. L.
    Solodov, M. V.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (01) : 199 - 221
  • [7] AN INEXACT SEMISMOOTH NEWTON METHOD FOR VARIATIONAL INEQUALITY WITH SYMMETRIC CONE CONSTRAINTS
    Chen, Shuang
    Pang, Li-Ping
    Li, Dan
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (03) : 733 - 746
  • [8] A smoothing projected Newton-type method for semismooth equations with bound constraints
    Tong, Xiaojiao
    Zhou, Shuzi
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) : 235 - 250
  • [9] Regularization properties of Tikhonov regularizaron with sparsity constraints
    Ramlau, Ronny
    [J]. Electronic Transactions on Numerical Analysis, 2008, 30 : 54 - 74
  • [10] REGULARIZATION PROPERTIES OF TIKHONOV REGULARIZATION WITH SPARSITY CONSTRAINTS
    Ramlau, Ronny
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 54 - 74