A semismooth Newton method for Tikhonov functionals with sparsity constraints

被引:72
|
作者
Griesse, R. [1 ]
Lorenz, D. A. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Univ Bremen, Zentrum Technomath, D-28334 Bremen, Germany
关键词
D O I
10.1088/0266-5611/24/3/035007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minimization problems in l(2) for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l(1) penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical examples are provided which show that our method compares favorably with existing approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] ON A SEMISMOOTH* NEWTON METHOD FOR SOLVING GENERALIZED EQUATIONS
    Gfrerer, Helmut
    Outrata, Jiri, V
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 489 - 517
  • [22] A semismooth Newton method for a kind of HJB equation
    Xu, Hong-Ru
    Xie, Shui-Lian
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (12) : 2581 - 2586
  • [23] The Josephy-Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Izmailov, Alexey F.
    Kurennoy, Alexey S.
    Solodov, Mikhail V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) : 17 - 45
  • [24] Semismooth Newton Method for Boundary Bilinear Control
    Casas, Eduardo
    Chrysafinos, Konstantinos
    Mateos, Mariano
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3549 - 3554
  • [25] Convergence rates and source conditions for Tikhonov regularization with sparsity constraints
    Lorenz, D. A.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (05): : 463 - 478
  • [26] SEMISMOOTH NEWTON METHODS FOR OPTIMAL CONTROL OF THE WAVE EQUATION WITH CONTROL CONSTRAINTS
    Kroener, Axel
    Kunisch, Karl
    Vexler, Boris
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) : 830 - 858
  • [27] Generalized Newton-iterative method for semismooth equations
    Sun, Zhe
    Zeng, Jinping
    Xu, Hongru
    [J]. NUMERICAL ALGORITHMS, 2011, 58 (03) : 333 - 349
  • [28] A Semismooth Newton Method for Fast, Generic Convex Programming
    Ali, Alnur
    Wong, Eric
    Kolter, J. Zico
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [29] ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION
    Hu, Jiang
    Tian, Tonghua
    Pan, Shaohua
    Wen, Zaiwen
    [J]. arXiv, 2022,
  • [30] A MULTIGRID SEMISMOOTH NEWTON METHOD FOR SEMILINEAR CONTACT PROBLEMS
    Ulbrich, Michael
    Ulbrich, Stefan
    Bratzke, Daniela
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (04) : 486 - 528