Edge-reinforced random walk on one-dimensional periodic graphs

被引:0
|
作者
Franz Merkl
Silke W. W. Rolles
机构
[1] University of Munich,Mathematical Institute
[2] Technische Universität München,Zentrum Mathematik
来源
关键词
Reinforced random walk; Recurrence; Random environment; Primary: 82B41; Secondary: 60K35; 60K37;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, linearly edge-reinforced random walk is studied on a large class of one-dimensional periodic graphs satisfying a certain reflection symmetry. It is shown that the edge-reinforced random walk is recurrent. Estimates for the position of the random walker are given. The edge-reinforced random walk has a unique representation as a random walk in a random environment, where the random environment is given by random weights on the edges. It is shown that these weights decay exponentially in space. The distribution of the random weights equals the distribution of the asymptotic proportion of time spent by the edge-reinforced random walker on the edges of the graph. The results generalize work of the authors in Merkl and Rolles (Ann Probab 33(6):2051–2093, 2005; 35(1):115–140, 2007) and Rolles (Probab Theory Related Fields 135(2):216–264, 2006) to a large class of graphs and to periodic initial weights with a reflection symmetry.
引用
收藏
页码:323 / 349
页数:26
相关论文
共 50 条
  • [1] Edge-reinforced random walk on one-dimensional periodic graphs
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) : 323 - 349
  • [2] Transience of Edge-Reinforced Random Walk
    Disertori, Margherita
    Sabot, Christophe
    Tarres, Pierre
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 121 - 148
  • [3] Edge-reinforced random walk on a ladder
    Merkl, F
    Rolles, SWW
    [J]. ANNALS OF PROBABILITY, 2005, 33 (06): : 2051 - 2093
  • [4] Transience of Edge-Reinforced Random Walk
    Margherita Disertori
    Christophe Sabot
    Pierre Tarrès
    [J]. Communications in Mathematical Physics, 2015, 339 : 121 - 148
  • [5] On the recurrence of edge-reinforced random walk on ℤ×G
    Silke W.W. Rolles
    [J]. Probability Theory and Related Fields, 2006, 135 : 216 - 264
  • [6] Once edge-reinforced random walk on a tree
    Durrett, R
    Kesten, H
    Limic, V
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 567 - 592
  • [7] Bounding a random environment for two-dimensional edge-reinforced random walk
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 530 - 565
  • [8] CORRELATION INEQUALITIES FOR EDGE-REINFORCED RANDOM WALK
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 753 - 763
  • [9] Once edge-reinforced random walk on a tree
    Rick Durrett
    Harry Kesten
    Vlada Limic
    [J]. Probability Theory and Related Fields, 2002, 122 : 567 - 592
  • [10] RECURRENCE OF EDGE-REINFORCED RANDOM WALK ON A TWO-DIMENSIONAL GRAPH
    Merkl, Franz
    Rolles, Silke W. W.
    [J]. ANNALS OF PROBABILITY, 2009, 37 (05): : 1679 - 1714