Deep learning-driven adaptive optics for single-molecule localization microscopy

被引:0
|
作者
Peiyi Zhang
Donghan Ma
Xi Cheng
Andy P. Tsai
Yu Tang
Hao-Cheng Gao
Li Fang
Cheng Bi
Gary E. Landreth
Alexander A. Chubykin
Fang Huang
机构
[1] Purdue University,Weldon School of Biomedical Engineering
[2] Purdue University,Davidson School of Chemical Engineering
[3] Purdue University,Department of Biological Sciences
[4] Purdue University,Purdue Institute for Integrative Neuroscience
[5] Indiana University School of Medicine,Stark Neurosciences Research Institute
[6] Indiana University School of Medicine,Department of Anatomy, Cell Biology and Physiology
[7] Purdue University,Purdue Institute of Inflammation, Immunology and Infectious Disease
来源
Nature Methods | 2023年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.
引用
收藏
页码:1748 / 1758
页数:10
相关论文
共 50 条
  • [31] Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy
    Burke, Daniel
    Patton, Brian
    Huang, Fang
    Bewersdorf, Joerg
    Booth, Martin J.
    OPTICA, 2015, 2 (02): : 177 - 185
  • [32] Comparing strategies for deep astigmatism-based single-molecule localization microscopy
    Siemons, Marijn
    Cloin, Bas M. C.
    Salas, Desiree M.
    Nijenhuis, Wilco
    Katrukha, Eugene A.
    Kapitein, Lukas C.
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (02): : 735 - 751
  • [33] Molecule counts in complex oligomers with single-molecule localization microscopy
    Baldering, Tim N.
    Bullerjahn, Jakob T.
    Hummer, Gerhard
    Heilemann, Mike
    Malkusch, Sebastian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (47)
  • [34] Deep-STORM: super-resolution single-molecule microscopy by deep learning
    Nehme, Elias
    Weiss, Lucien E.
    Michaeli, Tomer
    Shechtman, Yoav
    OPTICA, 2018, 5 (04): : 458 - 464
  • [35] Single-molecule optics
    Kulzer, F
    Orrit, M
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2004, 55 : 585 - 611
  • [36] Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification
    Liu, Jianli
    Li, Yumian
    Chen, Tailong
    Zhang, Fa
    Xu, Fan
    ANALYTICAL CHEMISTRY, 2024, 96 (28) : 11103 - 11114
  • [37] Deep learning for single-molecule science
    Albrecht, Tim
    Slabaugh, Gregory
    Alonso, Eduardo
    Al-Arif, S. M. Masudur R.
    NANOTECHNOLOGY, 2017, 28 (42)
  • [38] Deep-learning-assisted spectroscopic single-molecule localization microscopy based on spectrum-to-spectrum denoising
    Xu, Dandan
    Gu, Yuanjie
    Lu, Jun
    Xu, Lei
    Wang, Wei
    Dong, Biqin
    NANOSCALE, 2024, 16 (11) : 5729 - 5736
  • [39] Fast and robust multiplane single-molecule localization microscopy using a deep neural network
    Aritake, Toshimitsu
    Hino, Hideitsu
    Namiki, Shigeyuki
    Asanuma, Daisuke
    Hirose, Kenzo
    Murata, Noboru
    NEUROCOMPUTING, 2021, 451 : 279 - 289
  • [40] Symmetrically dispersed spectroscopic single-molecule localization microscopy
    Song, Ki-Hee
    Zhang, Yang
    Brenner, Benjamin
    Sun, Cheng
    Zhang, Hao F.
    Light: Science and Applications, 2020, 9 (01):