Deep-STORM: super-resolution single-molecule microscopy by deep learning

被引:391
|
作者
Nehme, Elias [1 ,2 ]
Weiss, Lucien E. [2 ]
Michaeli, Tomer [1 ]
Shechtman, Yoav [2 ]
机构
[1] Technion, Elect Engn Dept, IL-32000 Haifa, Israel
[2] Technion, Biomed Engn Dept, IL-32000 Haifa, Israel
来源
OPTICA | 2018年 / 5卷 / 04期
基金
以色列科学基金会;
关键词
RESOLUTION LIMIT; ALGORITHM;
D O I
10.1364/OPTICA.5.000458
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an ultrafast, precise, parameter-free method, which we term Deep-STORM, for obtaining super-resolution images from stochastically blinking emitters, such as fluorescent molecules used for localization microscopy. Deep-STORM uses a deep convolutional neural network that can be trained on simulated data or experimental measurements, both of which are demonstrated. The method achieves state-of-the-art resolution under challenging signal-to-noise conditions and high emitter densities and is significantly faster than existing approaches. Additionally, no prior information on the shape of the underlying structure is required, making the method applicable to any blinking dataset. We validate our approach by super-resolution image reconstruction of simulated and experimentally obtained data. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:458 / 464
页数:7
相关论文
共 50 条
  • [1] In Focus: Single-Molecule Super-Resolution Microscopy
    Roth, Juergen
    Heilemann, Mike
    [J]. HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 141 (06) : 559 - 560
  • [2] In Focus: Single-Molecule Super-Resolution Microscopy
    Roth, Juergen
    Heilemann, Mike
    [J]. HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 142 (01) : 3 - 4
  • [3] In Focus: Single-Molecule Super-Resolution Microscopy Foreword
    Lippincott-Schwartz, Jennifer
    [J]. HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 142 (01) : 1 - 2
  • [4] Nanoparticles for super-resolution microscopy and single-molecule tracking
    Dayong Jin
    Peng Xi
    Baoming Wang
    Le Zhang
    Jörg Enderlein
    Antoine M. van Oijen
    [J]. Nature Methods, 2018, 15 : 415 - 423
  • [5] Nanoparticles for super-resolution microscopy and single-molecule tracking
    Jin, Dayong
    Xi, Peng
    Wang, Baoming
    Zhang, Le
    Enderlein, Joerg
    van Oijen, Antoine M.
    [J]. NATURE METHODS, 2018, 15 (06) : 415 - 423
  • [6] Multicolor single-molecule localization super-resolution microscopy
    Pan, Leiting
    Hu, Fen
    Zhang, Xinzheng
    Xu, Jingjun
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (03):
  • [7] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    [J]. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [8] Super-Resolution Single-Molecule Localization Microscopy: Tricks of the Trade
    Whelan, Donna R.
    Bell, Toby D. M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (03): : 374 - 382
  • [9] Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy
    Mazidi, Hesam
    Ding, Tianben
    Nehorai, Arye
    Lew, Matthew D.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Single-Molecule Clustering for Super-Resolution Optical Fluorescence Microscopy
    Joshi, Prakash
    Mondal, Partha Pratim
    [J]. PHOTONICS, 2022, 9 (01)