Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds

被引:0
|
作者
Li Chen
Wenyi Chen
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
关键词
Nonlinear parabolic equation; Gradient estimate; Positive solution; 35J60; 35C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive a local gradient estimate for the positive solution to the following parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t=\Delta u+au\, {\rm log}\, u+bu\quad {\rm in}\,M$$\end{document}, where a, b are real constants, M is a complete noncompact Riemannian manifold. As a corollary, we give a local gradient estimate for the corresponding elliptic equation: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u+au\,{\rm log}\, u+bu=0\quad {\rm in}\,M$$\end{document}, which improves and extends the result of Ma (J Funct Anal 241:374–382, 2006) and get a bound for the positive solution to this elliptic equation.
引用
收藏
页码:397 / 404
页数:7
相关论文
共 50 条
  • [41] Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds
    C. A. Bortot
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    P. Piccione
    [J]. Applied Mathematics & Optimization, 2018, 78 : 219 - 265
  • [42] Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds
    Bortot, C. A.
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Piccione, P.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (02): : 219 - 265
  • [43] Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds
    Miller, L
    [J]. MATHEMATICAL RESEARCH LETTERS, 2005, 12 (01) : 37 - 47
  • [44] Gradient estimates for a weighted nonlinear equation on complete noncompact manifolds
    Li, Jing
    He, Guoqing
    Zhao, Peibiao
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (3-4): : 377 - 392
  • [45] GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC EQUATION ON COMPLETE NONCOMPACT RIEMANNIAN MANIFOLD
    Abolarinwa, Abimbola
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 391 - 402
  • [46] A C0-estimate for the parabolic Monge-Ampere equation on complete non-compact Kahler manifolds
    Chau, Albert
    Tam, Luen-Fai
    [J]. COMPOSITIO MATHEMATICA, 2010, 146 (01) : 259 - 270
  • [47] GAP THEOREMS FOR NON-COMPACT RIEMANNIAN-MANIFOLDS
    GREENE, RE
    WU, H
    [J]. DUKE MATHEMATICAL JOURNAL, 1982, 49 (03) : 731 - 756
  • [48] A NOTE ON ANOSOV FLOWS OF NON-COMPACT RIEMANNIAN MANIFOLDS
    Knieper, Gerhard
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) : 3955 - 3959
  • [49] GRADIENT ESTIMATES FOR A PARABOLIC p-LAPLACE EQUATION WITH LOGARITHMIC NONLINEARITY ON RIEMANNIAN MANIFOLDS
    Wang, Yu-Zhao
    Xue, Yan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (03) : 1329 - 1341
  • [50] Elliptic differential inclusions on non-compact Riemannian manifolds
    Kristaly, Alexandru
    Mezei, Ildiko I.
    Szilak, Karoly
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69