Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds

被引:0
|
作者
C. A. Bortot
M. M. Cavalcanti
V. N. Domingos Cavalcanti
P. Piccione
机构
[1] Federal University of Santa Catarina - Campuses Joinville,Technological Centre of Joinville
[2] State University of Maringá,Department of Mathematics
[3] IME-Universidade de São Paulo,Department of Mathematics
来源
关键词
Exponential Asymptotic Stability; Pinching Conditions; Dissipative Effects; Hessian Comparison Theorem; Decay Rate Estimates;
D O I
暂无
中图分类号
学科分类号
摘要
The Klein Gordon equation subject to a nonlinear and locally distributed damping, posed in a complete and non compact n dimensional Riemannian manifold (Mn,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {M}^n,\mathbf {g})$$\end{document} without boundary is considered. Let us assume that the dissipative effects are effective in (M\Ω)∪(Ω\V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {M}\backslash \Omega ) \cup (\Omega \backslash V)$$\end{document}, where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an arbitrary open bounded set with smooth boundary. In the present article we introduce a new class of non compact Riemannian manifolds, namely, manifolds which admit a smooth function f, such that the Hessian of f satisfies the pinching conditions (locally in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}), for those ones, there exist a finite number of disjoint open subsets Vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_k$$\end{document} free of dissipative effects such that ⋃kVk⊂V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup _k V_k \subset V$$\end{document} and for all ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, meas(V)≥meas(Ω)-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$meas(V)\ge meas(\Omega )-\varepsilon $$\end{document}, or, in other words, the dissipative effect inside Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} possesses measure arbitrarily small. It is important to be mentioned that if the function f satisfies the pinching conditions everywhere, then it is not necessary to consider dissipative effects inside Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}.
引用
收藏
页码:219 / 265
页数:46
相关论文
共 50 条
  • [1] Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds
    Bortot, C. A.
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Piccione, P.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (02): : 219 - 265
  • [3] EVOLUTION FLOWS ON NON-COMPACT RIEMANNIAN MANIFOLDS: STABILITY, PERIODICITY, AND APPLICATIONS
    Nguyen, Thieu huy
    Vu, Thi ngoc ha
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024,
  • [4] Geodesic nets on non-compact Riemannian manifolds
    Chambers, Gregory R.
    Liokumovich, Yevgeny
    Nabutovsky, Alexander
    Rotman, Regina
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (799): : 287 - 303
  • [5] CLOSED GEODESICS ON NON-COMPACT RIEMANNIAN MANIFOLDS
    THORBERGSSON, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1978, 159 (03) : 249 - 258
  • [6] Heat Content in Non-compact Riemannian Manifolds
    van den Berg, M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (01)
  • [7] Heat Content in Non-compact Riemannian Manifolds
    M. van den Berg
    [J]. Integral Equations and Operator Theory, 2018, 90
  • [8] Tautness for riemannian foliations on non-compact manifolds
    Royo Prieto, Jose Ignacio
    Saralegi-Aranguren, Martintxo
    Wolak, Robert
    [J]. MANUSCRIPTA MATHEMATICA, 2008, 126 (02) : 177 - 200
  • [9] Hardy inequalities on non-compact Riemannian manifolds
    Carron, G
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10): : 883 - 891
  • [10] Tautness for riemannian foliations on non-compact manifolds
    José Ignacio Royo Prieto
    Martintxo Saralegi-Aranguren
    Robert Wolak
    [J]. manuscripta mathematica, 2008, 126 : 177 - 200