Geodesic nets on non-compact Riemannian manifolds

被引:1
|
作者
Chambers, Gregory R. [1 ]
Liokumovich, Yevgeny [2 ]
Nabutovsky, Alexander [2 ]
Rotman, Regina [2 ]
机构
[1] Rice Univ, Dept Math, MS 136,Box 1892, Houston, TX 77251 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
CLOSED GEODESICS;
D O I
10.1515/crelle-2023-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geodesic flower is a finite collection of geodesic loops based at the same point ?? that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at ?? is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [1] Existence of a closed geodesic on non-compact Riemannian manifolds with boundary
    Bartolo, R
    Germinario, A
    Sánchez, M
    [J]. ADVANCED NONLINEAR STUDIES, 2002, 2 (01) : 51 - 69
  • [2] CLOSED GEODESICS ON NON-COMPACT RIEMANNIAN MANIFOLDS
    THORBERGSSON, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1978, 159 (03) : 249 - 258
  • [3] Heat Content in Non-compact Riemannian Manifolds
    M. van den Berg
    [J]. Integral Equations and Operator Theory, 2018, 90
  • [4] Heat Content in Non-compact Riemannian Manifolds
    van den Berg, M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (01)
  • [5] Tautness for riemannian foliations on non-compact manifolds
    Royo Prieto, Jose Ignacio
    Saralegi-Aranguren, Martintxo
    Wolak, Robert
    [J]. MANUSCRIPTA MATHEMATICA, 2008, 126 (02) : 177 - 200
  • [6] Hardy inequalities on non-compact Riemannian manifolds
    Carron, G
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10): : 883 - 891
  • [7] Tautness for riemannian foliations on non-compact manifolds
    José Ignacio Royo Prieto
    Martintxo Saralegi-Aranguren
    Robert Wolak
    [J]. manuscripta mathematica, 2008, 126 : 177 - 200
  • [8] Some properties of non-compact complete Riemannian manifolds
    Ma, Li
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (04): : 330 - 336
  • [9] GAP THEOREMS FOR NON-COMPACT RIEMANNIAN-MANIFOLDS
    GREENE, RE
    WU, H
    [J]. DUKE MATHEMATICAL JOURNAL, 1982, 49 (03) : 731 - 756
  • [10] Elliptic differential inclusions on non-compact Riemannian manifolds
    Kristaly, Alexandru
    Mezei, Ildiko I.
    Szilak, Karoly
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69