Bootstrapping Regression Parameters in Multivariate Survival Analysis

被引:12
|
作者
Loughin T.M. [1 ]
Koehler K.J. [2 ]
机构
[1] Statistical Laboratory, Department of Statistics, Kansas State University, Manhattan
[2] Department of Statistics, Iowa State University
基金
美国国家卫生研究院;
关键词
Bias correction; Correlation; Independence Working Model; Proportional hazards; Robust variance estimation;
D O I
10.1023/A:1009609218622
中图分类号
学科分类号
摘要
Bootstrap methods are proposed for estimating sampling distributions and associated statistics for regression parameters in multivariate survival data. We use an Independence Working Model (IWM) approach, fitting margins independently, to obtain consistent estimates of the parameters in the marginal models. Resampling procedures, however, are applied to an appropriate joint distribution to estimate covariance matrices, make bias corrections, and construct confidence intervals. The proposed methods allow for fixed or random explanatory variables, the latter case using extensions of existing resampling schemes (Loughin, 1995), and they permit the possibility of random censoring. An application is shown for the viral positivity time data previously analyzed by Wei, Lin, and Weissfeld( 1989). A simulation study of small-sample properties shows that the proposed bootstrap procedures provide substantial improvements in variance estimation over the robust variance estimator commonly used with the IWM.
引用
收藏
页码:157 / 177
页数:20
相关论文
共 50 条
  • [41] Multivariate nonlinear regression analysis of hydraulic fracturing parameters based on hybrid FEM-DEM
    Li, Yang
    Lan, Tianxiang
    [J]. ENGINEERING COMPUTATIONS, 2023, 40 (9/10) : 3075 - 3099
  • [42] Multivariate analysis of demographic parameters
    Ivanov, VP
    Churnosov, MI
    Kirilenko, AI
    [J]. GENETIKA, 1997, 33 (10): : 1435 - 1437
  • [43] Multivariate Analysis on the Effects of Diabetes and related Clinical Parameters on Cervical Cancer Survival Probability
    Gillani, Syed Wasif
    Zaghloul, Hisham A.
    Ansari, Irfan Altaf
    Abdul, Mohi Iqbal Mohammad
    Sulaiman, Syed Azhar S. Yed
    Baig, Mirza R.
    Rathore, Hassaan Anwar
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] EXTENDING MULTIVARIATE NETWORK META-ANALYSIS OF SURVIVAL FUNCTION PARAMETERS TO FRACTIONAL POLYNOMIALS
    Chan, K.
    Ayers, D.
    Jansen, J.
    Cope, S.
    [J]. VALUE IN HEALTH, 2020, 23 : S472 - S472
  • [45] Variable selection in semiparametric hazard regression for multivariate survival data
    Liu, Jicai
    Zhang, Riquan
    Zhao, Weihua
    Lv, Yazhao
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 26 - 40
  • [46] Multivariate Analysis on the Effects of Diabetes and related Clinical Parameters on Cervical Cancer Survival Probability
    Syed Wasif Gillani
    Hisham A. Zaghloul
    Irfan Altaf Ansari
    Mohi Iqbal Mohammad Abdul
    Syed Azhar Syed Sulaiman
    Mirza R. Baig
    Hassaan Anwar Rathore
    [J]. Scientific Reports, 9
  • [47] A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data
    Sahu S.K.
    Dey D.K.
    Aslanidou H.
    Sinha D.
    [J]. Lifetime Data Analysis, 1997, 3 (2) : 123 - 137
  • [48] ON A CLASS OF NON-PARAMETRIC TESTS FOR MULTIVARIATE REGRESSION PARAMETERS
    SRIVASTA.MS
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 2222 - +
  • [49] High-dimensional multivariate analysis of variance via geometric median and bootstrapping
    Cheng, Guanghui
    Lin, Ruitao
    Peng, Liuhua
    [J]. BIOMETRICS, 2024, 80 (03)
  • [50] Bootstrapping principal component regression models
    Wehrens, R
    VanderLinden, WE
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 157 - 171