Isoperimetric inequalities and regularity of A-harmonic functions on surfaces

被引:0
|
作者
Tomasz Adamowicz
Giona Veronelli
机构
[1] Polish Academy of Sciences,Institute of Mathematics
[2] Università di Milano Bicocca,Dipartimento di Matematica e Applicazioni
关键词
Primary 35R01; Secondary 58E20; 31C12; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the logarithmic and power-type convexity of the length of the level curves for a-harmonic functions on smooth surfaces and related isoperimetric inequalities. In particular, our analysis covers the p-harmonic and the minimal surface equations. As an auxiliary result, we obtain higher Sobolev regularity properties of the solutions, including the W2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{2,2}$$\end{document} regularity. The results are complemented by a number of estimates for the derivatives L′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L'$$\end{document} and L′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L''$$\end{document} of the length of the level curve function L, as well as by examples illustrating the presentation. Our work generalizes results due to Alessandrini, Longinetti, Talenti and Lewis in the Euclidean setting, as well as a recent article of ours devoted to the harmonic case on surfaces.
引用
收藏
相关论文
共 50 条
  • [31] Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation
    Habermann, Jens
    Zatorska-Goldstein, Anna
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 169 - 194
  • [32] Regularity theory on A-harmonic system and A-Dirac system
    Sun, Fengfeng
    Chen, Shuhong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [33] Isoperimetric Inequalities in Riemann Surfaces and Graphs
    Álvaro Martínez-Pérez
    José M. Rodríguez
    The Journal of Geometric Analysis, 2021, 31 : 3583 - 3607
  • [34] Isoperimetric inequalities on surfaces of constant curvature
    Ku, HT
    Ku, MC
    Zhang, XM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06): : 1162 - 1187
  • [35] CHEEGER CONSTANTS OF SURFACES AND ISOPERIMETRIC INEQUALITIES
    Papasoglu, Panos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5139 - 5162
  • [36] Toroidal trapped surfaces and isoperimetric inequalities
    Karkowski, Janusz
    Mach, Patryk
    Malec, Edward
    Murchadha, Niall O.
    Xie, Naqing
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [38] Some new integral inequalities for conjugate A-harmonic tensors
    Gao Hong-ya
    Hou Lan-ru
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (01) : 43 - 50
  • [39] Weighted Norm Inequalities for Solutions to the Nonhomogeneous A-Harmonic Equation
    Wen, Haiyu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [40] Ar (Ω)-weighted inequalities for A-harmonic tensors and related operators
    Ding, Shusen
    Xing, Yuming
    Bao, Gejun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 219 - 232