Isoperimetric Inequalities in Riemann Surfaces and Graphs

被引:0
|
作者
Álvaro Martínez-Pérez
José M. Rodríguez
机构
[1] Universidad de Castilla-La Mancha,Departamento de Análisis Económico y Finanzas
[2] Facultad de CC. Sociales de Talavera,Departamento de Matemáticas
[3] Universidad Carlos III de Madrid,undefined
来源
关键词
Isoperimetric inequality; Cheeger isoperimetric constant; Riemann surface; Poincaré metric; Gromov hyperbolicity; Primary 53C21; 53C23; Secondary 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
A celebrated theorem of Kanai states that quasi-isometries preserve isoperimetric inequalities between uniform Riemannian manifolds (with positive injectivity radius) and graphs. Our main result states that we can study the (Cheeger) isoperimetric inequality in a Riemann surface by using a graph related to it, even if the surface has injectivity radius zero (this graph is inspired in Kanai’s graph, but it is different from it). We also present an application relating Gromov boundary and isoperimetric inequality.
引用
收藏
页码:3583 / 3607
页数:24
相关论文
共 50 条
  • [1] Isoperimetric Inequalities in Riemann Surfaces and Graphs
    Martinez-Perez, Alvaro
    Rodriguez, Jose M.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 3583 - 3607
  • [2] Isoperimetric inequalities in Riemann surfaces of infinite type
    Alvarez, V
    Pestana, D
    Rodríguez, JM
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 1999, 15 (02) : 353 - 427
  • [3] On the asymptotic isoperimetric constants for Riemann surfaces and graphs
    Brooks, R
    Zuk, A
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 62 (01) : 49 - 78
  • [4] Isoperimetric inequalities for graphs
    Amghibech, S
    [J]. POTENTIAL ANALYSIS, 1997, 6 (04) : 355 - 367
  • [5] Isoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces
    Lanphier, Dominic
    Rosenhouse, Jason
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [6] ISOPERIMETRIC INEQUALITIES ON CURVED SURFACES
    CHAVEL, I
    FELDMAN, EA
    [J]. ADVANCES IN MATHEMATICS, 1980, 37 (02) : 83 - 98
  • [7] Isoperimetric inequalities for sectors on surfaces
    Bahn, H
    Hong, S
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (02) : 257 - 270
  • [8] DIASTOLIC AND ISOPERIMETRIC INEQUALITIES ON SURFACES
    Balacheff, Florent
    Sabourau, Stephane
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (04): : 579 - 605
  • [9] Isoperimetric inequalities for Cartesian products of graphs
    Chung, FRK
    Tetali, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02): : 141 - 148
  • [10] Percolation on Infinite Graphs and Isoperimetric Inequalities
    Alves, Rogerio G.
    Procacci, Aldo
    Sanchis, Remy
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (05) : 831 - 845