Galerkin finite element method for time-fractional stochastic diffusion equations

被引:0
|
作者
Guang-an Zou
机构
[1] Henan University,School of Mathematics and Statistics
来源
关键词
Time-fractional derivative; Stochastic diffusion equations; Galerkin finite element method; Error estimates; 65C30; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, Galerkin finite element method for solving the time-fractional stochastic diffusion equations with multiplicative noise is proposed and investigated. The pathwise regularity properties of solutions to the semidiscrete Galerkin approximations are demonstrated and the convergence of optimal rates are derived. And also we construct the fully discrete scheme which is based on the approximations of the Mittag–Leffler function and analyze the error estimates of convergence in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}-norm space. Finally, numerical results are conducted to confirm our theoretical findings.
引用
收藏
页码:4877 / 4898
页数:21
相关论文
共 50 条
  • [31] Galerkin method for time fractional diffusion equations
    Djilali L.
    Rougirel A.
    [J]. Journal of Elliptic and Parabolic Equations, 2018, 4 (2) : 349 - 368
  • [32] Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations
    Boya Zhou
    Xiaoli Chen
    Dongfang Li
    [J]. Journal of Scientific Computing, 2020, 85
  • [33] Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations
    Zhou, Boya
    Chen, Xiaoli
    Li, Dongfang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [34] A Computational Study of an Implicit Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Wei, Leilei
    Zhang, Xindong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [35] Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations
    Wei, Leilei
    Zhang, Xindong
    He, Yinnian
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (04) : 634 - 648
  • [36] GALERKIN FINITE ELEMENT APPROXIMATIONS FOR STOCHASTIC SPACE-TIME FRACTIONAL WAVE EQUATIONS
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3173 - 3202
  • [37] SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE ELEMENT METHOD
    Esen, A.
    Ucar, Y.
    Yagmurlu, M.
    Tasbozan, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (02): : 155 - 168
  • [38] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    [J]. Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [39] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [40] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Aniruddha Seal
    Srinivasan Natesan
    Suayip Toprakseven
    [J]. Journal of Scientific Computing, 2024, 98