A Computational Study of an Implicit Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations

被引:2
|
作者
Wei, Leilei [1 ]
Zhang, Xindong [2 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
[2] Xinjiang Normal Univ, Coll Math Sci, Urumqi 830054, Peoples R China
关键词
FINITE-ELEMENT-METHOD;
D O I
10.1155/2014/898217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose, analyze, and test a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional diffusion equation. The proposed method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully, we prove that our scheme is unconditionally stable and convergent. Finally, numerical examples are performed to illustrate the effectiveness and the accuracy of the method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    曾展宽
    陈艳萍
    [J]. Acta Mathematica Scientia, 2023, 43 (02) : 839 - 854
  • [2] A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Zhankuan Zeng
    Yanping Chen
    [J]. Acta Mathematica Scientia, 2023, 43 : 839 - 854
  • [3] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Zeng, Zhankuan
    Chen, Yanping
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 839 - 854
  • [4] A Local Discontinuous Galerkin Method for Time-Fractional Burgers Equations
    Yuan, Wenping
    Chen, Yanping
    Huang, Yunqing
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 818 - 837
  • [5] Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations
    Wei, Leilei
    Zhang, Xindong
    He, Yinnian
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (04) : 634 - 648
  • [6] A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 367 - 379
  • [7] A DISCONTINUOUS PETROV-GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2512 - 2529
  • [8] The local discontinuous Galerkin method for 2D nonlinear time-fractional advection–diffusion equations
    Jafar Eshaghi
    Saeed Kazem
    Hojjatollah Adibi
    [J]. Engineering with Computers, 2019, 35 : 1317 - 1332
  • [9] The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations
    Eshaghi, Jafar
    Kazem, Saeed
    Adibi, Hojjatollah
    [J]. ENGINEERING WITH COMPUTERS, 2019, 35 (04) : 1317 - 1332
  • [10] Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrodinger equation
    Wei, Leilei
    He, Yinnian
    Zhang, Xindong
    Wang, Shaoli
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 59 : 28 - 34