A Computational Study of an Implicit Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations

被引:2
|
作者
Wei, Leilei [1 ]
Zhang, Xindong [2 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
[2] Xinjiang Normal Univ, Coll Math Sci, Urumqi 830054, Peoples R China
关键词
FINITE-ELEMENT-METHOD;
D O I
10.1155/2014/898217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose, analyze, and test a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional diffusion equation. The proposed method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully, we prove that our scheme is unconditionally stable and convergent. Finally, numerical examples are performed to illustrate the effectiveness and the accuracy of the method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS
    Deng, W. H.
    Hesthaven, J. S.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1845 - 1864
  • [22] A Stable and Convergent Hybridized Discontinuous Galerkin Method for Time-Fractional Telegraph Equations
    Baharlouei, Sh.
    Mokhtari, R.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (11) : 1175 - 1193
  • [23] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    K. Mustapha
    B. Abdallah
    K. M. Furati
    M. Nour
    [J]. Numerical Algorithms, 2016, 73 : 517 - 534
  • [24] Galerkin finite element method for time-fractional stochastic diffusion equations
    Guang-an Zou
    [J]. Computational and Applied Mathematics, 2018, 37 : 4877 - 4898
  • [25] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    Nour, M.
    [J]. NUMERICAL ALGORITHMS, 2016, 73 (02) : 517 - 534
  • [26] Galerkin finite element method for time-fractional stochastic diffusion equations
    Zou, Guang-an
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4877 - 4898
  • [27] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    Yeganeh, S.
    Mokhtari, R.
    Hesthaven, J. S.
    [J]. BIT NUMERICAL MATHEMATICS, 2017, 57 (03) : 685 - 707
  • [28] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    S. Yeganeh
    R. Mokhtari
    J. S. Hesthaven
    [J]. BIT Numerical Mathematics, 2017, 57 : 685 - 707
  • [29] A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition
    Huang, Chaobao
    Stynes, Martin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 15 - 29
  • [30] Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations
    Ahmadinia, M.
    Safari, Z.
    Fouladi, S.
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (03) : 533 - 554