Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method

被引:0
|
作者
S. Yeganeh
R. Mokhtari
J. S. Hesthaven
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] EPFL-SB-MATH-MCSS,undefined
[3] École Polytechnique Fédéral de Lausanne,undefined
来源
BIT Numerical Mathematics | 2017年 / 57卷
关键词
Inverse source problem; Fractional diffusion equation; Local discontinuous Galerkin method; 65M32; 65M60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to determining a space-dependent source term in an inverse problem of the time-fractional diffusion equation. We use a method based on a finite difference scheme in time and a local discontinuous Galerkin method in space and investigate the numerical stability and convergence of the proposed method. Finally, various numerical examples are used illustrate the effectiveness and accuracy of the method.
引用
收藏
页码:685 / 707
页数:22
相关论文
共 50 条
  • [1] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    Yeganeh, S.
    Mokhtari, R.
    Hesthaven, J. S.
    [J]. BIT NUMERICAL MATHEMATICS, 2017, 57 (03) : 685 - 707
  • [2] A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 367 - 379
  • [3] A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation
    Xiong, Xiangtuan
    Xue, Xuemin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 292 - 303
  • [4] Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation
    Fan Yang
    Yu-Peng Ren
    Xiao-Xiao Li
    Dun-Gang Li
    [J]. Boundary Value Problems, 2017
  • [5] Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation
    Yang, Fan
    Ren, Yu-Peng
    Li, Xiao-Xiao
    Li, Dun-Gang
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [6] Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation
    Wang, Jun-Gang
    Wei, Ting
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (20) : 6139 - 6149
  • [7] Reconstruction of a space-dependent source in the inexact order time-fractional diffusion equation
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    Nguyen Dang Minh
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [8] RECOVERING A SPACE-DEPENDENT SOURCE TERM IN A TIME-FRACTIONAL DIFFUSION WAVE EQUATION
    Wei, Ting
    Yan, Xiongbin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (05): : 1801 - 1821
  • [9] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    曾展宽
    陈艳萍
    [J]. Acta Mathematica Scientia, 2023, 43 (02) : 839 - 854
  • [10] A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Zhankuan Zeng
    Yanping Chen
    [J]. Acta Mathematica Scientia, 2023, 43 : 839 - 854