L(D, 2, 1)-labeling of Square Grid

被引:0
|
作者
Soumen Atta
Priya Ranjan Sinha Mahapatra
机构
[1] University of Kalyani,Department of Computer Science and Engineering
来源
关键词
Graph labeling; Square grid; Labeling number; Frequency assignment problem (FAP);
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer D(≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D (\ge 3)$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^+$$\end{document}, a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is the problem of assigning non-negative integers (known as labels) from the set {0,…,λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0, \ldots , \lambda \}$$\end{document} to the vertices of G such that if any two vertices in V are one, two and three distance apart from each other, then the assigned labels to these vertices must have a difference of at least D, 2 and 1, respectively. The vertices which are at least 4 distance apart can receive the same label. The minimum value among all the possible values of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} for which there exists a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling is known as the labeling number. In this paper, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is considered. The lower bound on the labeling number for square grid is presented, and a formula for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number.
引用
收藏
页码:485 / 487
页数:2
相关论文
共 50 条
  • [41] The L(3,2,1)-labeling on Bipartite Graphs
    Yuan Wan-lian1
    CommunicationsinMathematicalResearch, 2009, 25 (01) : 79 - 87
  • [42] Heuristic Algorithms for the L(2,1)-Labeling Problem
    Panda, B. S.
    Goel, Preeti
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 214 - 221
  • [43] L(2,1)-Labeling of Unigraphs (Extended Abstract)
    Calamoneri, Tiziana
    Petreschi, Rossella
    THEORY AND PRACTICE OF ALGORITHMS IN COMPUTER SYSTEMS, 2011, 6595 : 57 - 68
  • [44] Exact Algorithms for L(2,1)-Labeling of Graphs
    Frédéric Havet
    Martin Klazar
    Jan Kratochvíl
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2011, 59 : 169 - 194
  • [45] On the L(2, 1)-labeling conjecture for brick product graphs
    Zehui Shao
    Xiaosong Zhang
    Huiqin Jiang
    Bo Wang
    Juanjuan He
    Journal of Combinatorial Optimization, 2017, 34 : 706 - 724
  • [46] The L(2,1)-labeling on Cartesian sum of graphs
    Shao, Zhendong
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2008, 21 (08) : 843 - 848
  • [47] L(2,1)-labeling of oriented planar graphs
    Calamoneri, T.
    Sinaimeri, B.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1719 - 1725
  • [48] L3,2,1 LABELING OF FIRECRACKER GRAPH
    Sarbaini, A. N. M.
    Salman, A. N. M.
    Putra, Ganesha Lapenangga
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2023, 29 (01) : 24 - 35
  • [49] L(2,1)-labeling of disk intersection graphs
    Chybowska-Sokol, Joanna
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    DISCRETE APPLIED MATHEMATICS, 2020, 277 (277) : 71 - 81
  • [50] Exact algorithms for L(2,1)-labeling of graphs
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 513 - +