L(D, 2, 1)-labeling of Square Grid

被引:0
|
作者
Soumen Atta
Priya Ranjan Sinha Mahapatra
机构
[1] University of Kalyani,Department of Computer Science and Engineering
来源
关键词
Graph labeling; Square grid; Labeling number; Frequency assignment problem (FAP);
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer D(≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D (\ge 3)$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^+$$\end{document}, a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is the problem of assigning non-negative integers (known as labels) from the set {0,…,λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0, \ldots , \lambda \}$$\end{document} to the vertices of G such that if any two vertices in V are one, two and three distance apart from each other, then the assigned labels to these vertices must have a difference of at least D, 2 and 1, respectively. The vertices which are at least 4 distance apart can receive the same label. The minimum value among all the possible values of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} for which there exists a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling is known as the labeling number. In this paper, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is considered. The lower bound on the labeling number for square grid is presented, and a formula for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number.
引用
收藏
页码:485 / 487
页数:2
相关论文
共 50 条
  • [31] 2D nanoporous molecular square grid: Manganese (II) norfloxacin complex
    Wang, LZ
    Chen, ZF
    Wang, XS
    Li, HY
    Xiong, RG
    You, XZ
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2002, 18 (12) : 1185 - 1190
  • [32] 3-Total Edge Product Cordial Labeling for Stellation of Square Grid Graph
    Ullah, Rizwan
    Rahmat, Gul
    Numan, Muhammad
    Yannick, Kraidi Anoh
    Aslam, Adnan
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [33] Optimal L(3,2,1)-labeling of trees
    Zhang, Xiaoling
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (03) : 310 - 314
  • [34] On L(2,1)-labeling of generalized Petersen graphs
    Huang, Yuan-Zhen
    Chiang, Chun-Ying
    Huang, Liang-Hao
    Yeh, Hong-Gwa
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 266 - 279
  • [35] Heuristic Algorithms for the L(2,1)-Labeling Problem
    Panda, B.S.
    Goel, Preeti
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6466 LNCS : 214 - 221
  • [36] On L(2,1)-labeling of generalized Petersen graphs
    Yuan-Zhen Huang
    Chun-Ying Chiang
    Liang-Hao Huang
    Hong-Gwa Yeh
    Journal of Combinatorial Optimization, 2012, 24 : 266 - 279
  • [37] Exact Algorithms for L(2,1)-Labeling of Graphs
    Havet, Frederic
    Klazar, Martin
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHMICA, 2011, 59 (02) : 169 - 194
  • [38] L(2,1)-labeling of strong products of cycles
    Korze, D
    Vesel, A
    INFORMATION PROCESSING LETTERS, 2005, 94 (04) : 183 - 190
  • [39] L(2, 1)-Labeling of Permutation and Bipartite Permutation Graphs
    Paul S.
    Pal M.
    Pal A.
    Mathematics in Computer Science, 2015, 9 (1) : 113 - 123
  • [40] L(3, 2, 1)-Labeling of Certain Planar Graphs
    Calamoneri, Tiziana
    CEUR Workshop Proceedings, 2023, 3587 : 65 - 76