L(D, 2, 1)-labeling of Square Grid

被引:0
|
作者
Soumen Atta
Priya Ranjan Sinha Mahapatra
机构
[1] University of Kalyani,Department of Computer Science and Engineering
来源
关键词
Graph labeling; Square grid; Labeling number; Frequency assignment problem (FAP);
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer D(≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D (\ge 3)$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^+$$\end{document}, a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is the problem of assigning non-negative integers (known as labels) from the set {0,…,λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0, \ldots , \lambda \}$$\end{document} to the vertices of G such that if any two vertices in V are one, two and three distance apart from each other, then the assigned labels to these vertices must have a difference of at least D, 2 and 1, respectively. The vertices which are at least 4 distance apart can receive the same label. The minimum value among all the possible values of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} for which there exists a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling is known as the labeling number. In this paper, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is considered. The lower bound on the labeling number for square grid is presented, and a formula for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-L(D, 2, 1)-labeling of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number.
引用
收藏
页码:485 / 487
页数:2
相关论文
共 50 条
  • [1] L(D, 2, 1)-labeling of Square Grid
    Atta, Soumen
    Mahapatra, Priya Ranjan Sinha
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (06): : 485 - 487
  • [2] L(1,2)-labeling numbers on square of cycles
    Liu, Le
    Wu, Qiong
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 915 - 919
  • [3] L(2, 1)-edge labeling of Infinite Triangular Grid
    Bandopadhyay, Susobhan
    Ghosh, Sasthi C.
    Koley, Subhasis
    CEUR Workshop Proceedings, 2021, 3072 : 179 - 192
  • [4] L(3,2,1)-labeling problem of square of path
    Amanathulla, Sk
    Khatun, Jasminara
    Pal, Madhumangal
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2023, 15 (01):
  • [5] Optimal L(1,2)-edge Labeling of Infinite Octagonal Grid
    Koley, Subhasis
    Ghosh, Sasthi C.
    arXiv, 2022,
  • [6] L(d,2,1)-Labeling of Sun Graphs
    Indriati, Diari
    Martini, Titin S.
    Herlinawati, Novita
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2012)L: SCIENCE FOR HEALTH, FOOD AND SUSTAINABLE ENERGY, 2014, 1589 : 500 - 503
  • [7] The game L(d, 1)-labeling problem of graphs
    Chia, Ma-Lian
    Hsu, Huei-Ni
    Kuo, David
    Liaw, Sheng-Chyang
    Xu, Zi-teng
    DISCRETE MATHEMATICS, 2012, 312 (20) : 3037 - 3045
  • [8] Connected component labeling on a 2D grid using CUDA
    Kalentev, Oleksandr
    Rai, Abha
    Kemnitz, Stefan
    Schneider, Ralf
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2011, 71 (04) : 615 - 620
  • [9] L(2; 1; 1)-labeling of interval graphs
    Amanathulla, Sk.
    Bera, Biswajit
    Pal, Madhumangal
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):
  • [10] L(2,1)-labeling of unigraphs
    Department of Computer Science, Sapienza University of Rome, Italy
    Lect. Notes Comput. Sci., (57-68):