Gravitational collapse of charged scalar fields

被引:0
|
作者
Jose M. Torres
Miguel Alcubierre
机构
[1] Universidad Nacional Autónoma de México,Instituto de Ciencias Nucleares
来源
关键词
Gravitational collapse; Eintein–Maxwell–Klein–Gordon system; Cosmic censorship; Charged scalar fields;
D O I
暂无
中图分类号
学科分类号
摘要
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell–Klein–Gordon sector are derived in the 3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document} formalism, and coupled to gravity by means of the stress–energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte–Shapiro–Shibata–Nakamura formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn’t disperse and approaches a final state corresponding to a sub-extremal Reissner–Nördstrom black hole with |Q|<M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q|<M$$\end{document}. By increasing the fundamental charge of the scalar field q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} we find that the final black hole tends to become more and more neutral. Our results support the cosmic censorship conjecture for the case of charged matter.
引用
收藏
相关论文
共 50 条
  • [41] Scalar particles in weak gravitational fields
    Filho, RMT
    Bezerra, VB
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (01) : 307 - 315
  • [42] Dynamics of charged plane symmetric gravitational collapse
    M. Sharif
    Aisha Siddiqa
    [J]. General Relativity and Gravitation, 2011, 43 : 73 - 91
  • [43] Effects of pair creation on charged gravitational collapse
    Sorkin, E
    Piran, T
    [J]. PHYSICAL REVIEW D, 2001, 63 (08)
  • [44] IMPROVED GRAVITATIONAL COUPLING OF SCALAR FIELDS
    GUPTA, SN
    RADFORD, SF
    [J]. PHYSICAL REVIEW D, 1979, 19 (04): : 1065 - 1069
  • [46] GRAVITATIONAL INSTABILITY AND COLLAPSE OF CHARGED FLUID SHELLS
    CHASE, JE
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1970, 67 (02): : 136 - &
  • [47] Charged Perfect Fluid Cylindrical Gravitational Collapse
    Sharif, Muhammad
    Abbas, Ghulam
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (10)
  • [48] PARAMETRIC INSTABILITY IN SCALAR GRAVITATIONAL FIELDS
    Davies, Trevor B.
    Wang, Charles H. -T.
    Bingham, Robert
    Mendonca, J. Tito
    [J]. MODERN PHYSICS LETTERS A, 2012, 27 (24)
  • [49] Holographic complexity and charged scalar fields
    Sinamuli, Musema
    Mann, Robert B.
    [J]. PHYSICAL REVIEW D, 2019, 99 (10)
  • [50] Critical gravitational collapse of a massive complex scalar field
    Jimenez-Vazquez, Erik
    Alcubierre, Miguel
    [J]. PHYSICAL REVIEW D, 2022, 106 (04)