Gravitational collapse of charged scalar fields

被引:0
|
作者
Jose M. Torres
Miguel Alcubierre
机构
[1] Universidad Nacional Autónoma de México,Instituto de Ciencias Nucleares
来源
关键词
Gravitational collapse; Eintein–Maxwell–Klein–Gordon system; Cosmic censorship; Charged scalar fields;
D O I
暂无
中图分类号
学科分类号
摘要
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell–Klein–Gordon sector are derived in the 3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document} formalism, and coupled to gravity by means of the stress–energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte–Shapiro–Shibata–Nakamura formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn’t disperse and approaches a final state corresponding to a sub-extremal Reissner–Nördstrom black hole with |Q|<M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q|<M$$\end{document}. By increasing the fundamental charge of the scalar field q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} we find that the final black hole tends to become more and more neutral. Our results support the cosmic censorship conjecture for the case of charged matter.
引用
下载
收藏
相关论文
共 50 条
  • [21] Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I
    Hod, S
    Piran, T
    PHYSICAL REVIEW D, 1998, 58 (02):
  • [22] Critical behavior in 3D gravitational collapse of massless scalar fields
    Deppe, Nils
    Kidder, Lawrence E.
    Scheel, Mark A.
    Teukolsky, Saul A.
    PHYSICAL REVIEW D, 2019, 99 (02)
  • [23] Gravitational collapse of matter in the presence of nonminimally coupled quintessence and phantomlike scalar fields
    Saha, Priyanka
    Dey, Dipanjan
    Bhattacharya, Kaushik
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [24] ASYMPTOTICS OF GRAVITATIONAL COLLAPSE OF SCALAR WAVES
    GOMEZ, R
    WINICOUR, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) : 1445 - 1457
  • [25] THE GRAVITATIONAL COLLAPSE OF A HIGGS SCALAR FIELD
    吴忠超
    ScienceinChina,SerA., 1984, Ser.A.1984 (05) : 521 - 530
  • [26] THE GRAVITATIONAL COLLAPSE OF A HIGGS SCALAR FIELD
    WU, ZC
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (05): : 521 - 530
  • [27] THE GRAVITATIONAL COLLAPSE OF A HIGGS SCALAR FIELD
    吴忠超
    Science China Mathematics, 1984, (05) : 521 - 530
  • [28] GRAVITATIONAL COLLAPSE OF A CHARGED FLUID SPHERE
    MASHHOON, B
    PARTOVI, MH
    PHYSICAL REVIEW D, 1979, 20 (10): : 2455 - 2468
  • [29] Relaxation dynamics of charged gravitational collapse
    Hod, Shahar
    PHYSICS LETTERS A, 2010, 374 (29) : 2901 - 2903
  • [30] Nonadiabatic charged spherical gravitational collapse
    Di Prisco, A.
    Herrera, L.
    Le Denmat, G.
    MacCallum, M. A. H.
    Santos, N. O.
    PHYSICAL REVIEW D, 2007, 76 (06)