Heterotic/type II duality and non-geometric compactifications

被引:0
|
作者
Y. Gautier
C. M. Hull
D. Israël
机构
[1] LPTHE,The Blackett Laboratory
[2] UMR 7589,undefined
[3] Sorbonne Universités,undefined
[4] CNRS,undefined
[5] UMR 7589,undefined
[6] LPTHE,undefined
[7] Imperial College London,undefined
关键词
Conformal Field Models in String Theory; String Duality; Superstring Vacua; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of dualities relating non-geometric Calabi-Yau com- pactifications of type II string theory to T-fold compactifications of the heterotic string, both preserving four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry. The non-geometric Calabi-Yau space is a K 3 fibration over T2 with non-geometric monodromies in the duality group O(Γ4,20); this is dual to a heterotic reduction on a T4 fibration over T2 with the O(Γ4,20) monodromies now viewed as heterotic T-dualities. At a point in moduli space which is a minimum of the scalar potential, the type II compactification becomes an asymmetric Gepner model and the monodromies become automorphisms involving mirror symmetries, while the heterotic dual is an asymmetric toroidal orbifold. We generalise previous constructions to ones in which the automorphisms are not of prime order. The type II construction is perturbatively consistent, but the naive heterotic dual is not modular invariant. Modular invariance on the heterotic side is achieved by including twists in the circles dual to the winding numbers round the T2, and this in turn introduces non-perturbative phases depending on NS5-brane charge in the type II construction.
引用
收藏
相关论文
共 50 条
  • [31] Heterotic-Type II duality and wrapping rules
    E. A. Bergshoeff
    C. Condeescu
    G. Pradisi
    F. Riccioni
    Journal of High Energy Physics, 2013
  • [32] Heterotic-type II duality in the hypermultiplet sector
    Jan Louis
    Roberto Valandro
    Journal of High Energy Physics, 2012
  • [33] Heterotic-type II duality in twistor space
    Alexandrov, Sergei
    Pioline, Boris
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03):
  • [34] Duality between the webs of heterotic and type II vacua
    Candelas, P
    Font, A
    NUCLEAR PHYSICS B, 1998, 511 (1-2) : 295 - 325
  • [35] Heterotic-Type II duality and wrapping rules
    Bergshoeff, E. A.
    Condeescu, C.
    Pradisi, G.
    Riccioni, F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [36] Little string theory and heterotic type II duality
    Aharony, O
    Fiol, B
    Kutasov, D
    Sahakyan, DA
    NUCLEAR PHYSICS B, 2004, 679 (1-2) : 3 - 65
  • [37] Heterotic-type II duality in the hypermultiplet sector
    Louis, Jan
    Valandro, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [38] Heterotic-type II duality in twistor space
    Sergei Alexandrov
    Boris Pioline
    Journal of High Energy Physics, 2013
  • [39] Non-geometric vacua of the Spin(32)/ℤ2 heterotic string and little string theories
    Anamaría Font
    Christoph Mayrhofer
    Journal of High Energy Physics, 2017
  • [40] Compactifications of heterotic strings on non-Kahler complex manifolds II
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    Sharpe, E
    NUCLEAR PHYSICS B, 2004, 678 (1-2) : 19 - 100