Heterotic/type II duality and non-geometric compactifications

被引:0
|
作者
Y. Gautier
C. M. Hull
D. Israël
机构
[1] LPTHE,The Blackett Laboratory
[2] UMR 7589,undefined
[3] Sorbonne Universités,undefined
[4] CNRS,undefined
[5] UMR 7589,undefined
[6] LPTHE,undefined
[7] Imperial College London,undefined
关键词
Conformal Field Models in String Theory; String Duality; Superstring Vacua; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of dualities relating non-geometric Calabi-Yau com- pactifications of type II string theory to T-fold compactifications of the heterotic string, both preserving four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry. The non-geometric Calabi-Yau space is a K 3 fibration over T2 with non-geometric monodromies in the duality group O(Γ4,20); this is dual to a heterotic reduction on a T4 fibration over T2 with the O(Γ4,20) monodromies now viewed as heterotic T-dualities. At a point in moduli space which is a minimum of the scalar potential, the type II compactification becomes an asymmetric Gepner model and the monodromies become automorphisms involving mirror symmetries, while the heterotic dual is an asymmetric toroidal orbifold. We generalise previous constructions to ones in which the automorphisms are not of prime order. The type II construction is perturbatively consistent, but the naive heterotic dual is not modular invariant. Modular invariance on the heterotic side is achieved by including twists in the circles dual to the winding numbers round the T2, and this in turn introduces non-perturbative phases depending on NS5-brane charge in the type II construction.
引用
收藏
相关论文
共 50 条
  • [11] Non-geometric five-branes in heterotic supergravity
    Sasaki, Shin
    Yata, Masaya
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):
  • [12] Fluxes in heterotic and type II string compactifications
    Curio, G
    Klemm, A
    Körs, B
    Lüst, D
    NUCLEAR PHYSICS B, 2002, 620 (1-2) : 237 - 258
  • [13] Heterotic-type II duality
    Font, A
    FIRST LATIN AMERICAN SYMPOSIUM ON HIGH ENERGY PHYSICS AND VII MEXICAN SCHOOL OF PARTICLES AND FIELDS, 1997, (400): : 477 - 483
  • [14] Generalised T-duality and non-geometric backgrounds
    Dabholkar, Atish
    Hull, Chris
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05):
  • [15] Dimensional oxidation of non-geometric fluxes in type II orientifolds
    Ralph Blumenhagen
    Xin Gao
    Daniela Herschmann
    Pramod Shukla
    Journal of High Energy Physics, 2013
  • [17] Dimensional oxidation of non-geometric fluxes in type II orientifolds
    Blumenhagen, Ralph
    Gao, Xin
    Herschmann, Daniela
    Shukla, Pramod
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [18] Effective action for non-geometric fluxes duality covariant actions
    Lee, Kanghoon
    Rey, Soo-Jong
    Sakatani, Yuho
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [19] Duality of N=2 heterotic-type I compactifications in four dimensions
    Antoniadis, I
    Partouche, H
    Taylor, TR
    NUCLEAR PHYSICS B, 1997, 499 (1-2) : 29 - 44
  • [20] T-duality, generalized geometry and non-geometric backgrounds
    Grana, Mariana
    Minasian, Ruben
    Petrini, Michela
    Waldram, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):