Heterotic/type II duality and non-geometric compactifications

被引:0
|
作者
Y. Gautier
C. M. Hull
D. Israël
机构
[1] LPTHE,The Blackett Laboratory
[2] UMR 7589,undefined
[3] Sorbonne Universités,undefined
[4] CNRS,undefined
[5] UMR 7589,undefined
[6] LPTHE,undefined
[7] Imperial College London,undefined
关键词
Conformal Field Models in String Theory; String Duality; Superstring Vacua; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of dualities relating non-geometric Calabi-Yau com- pactifications of type II string theory to T-fold compactifications of the heterotic string, both preserving four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry. The non-geometric Calabi-Yau space is a K 3 fibration over T2 with non-geometric monodromies in the duality group O(Γ4,20); this is dual to a heterotic reduction on a T4 fibration over T2 with the O(Γ4,20) monodromies now viewed as heterotic T-dualities. At a point in moduli space which is a minimum of the scalar potential, the type II compactification becomes an asymmetric Gepner model and the monodromies become automorphisms involving mirror symmetries, while the heterotic dual is an asymmetric toroidal orbifold. We generalise previous constructions to ones in which the automorphisms are not of prime order. The type II construction is perturbatively consistent, but the naive heterotic dual is not modular invariant. Modular invariance on the heterotic side is achieved by including twists in the circles dual to the winding numbers round the T2, and this in turn introduces non-perturbative phases depending on NS5-brane charge in the type II construction.
引用
收藏
相关论文
共 50 条
  • [1] Heterotic/type II duality and non-geometric compactifications
    Gautier, Y.
    Hull, C. M.
    Israel, D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [2] Moduli spaces of non-geometric type II/heterotic dual pairs
    Gautier, Yoan
    Israel, Dan
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [3] Moduli spaces of non-geometric type II/heterotic dual pairs
    Yoan Gautier
    Dan Israël
    Journal of High Energy Physics, 2020
  • [4] K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications
    Andreas Malmendier
    David R. Morrison
    Letters in Mathematical Physics, 2015, 105 : 1085 - 1118
  • [5] K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications
    Malmendier, Andreas
    Morrison, David R.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1085 - 1118
  • [6] Geometric and non-geometric compactifications of IIB supergravity
    Reid-Edwards, R. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [7] Duality orbits of non-geometric fluxes
    Dibitetto, G.
    Fernandez-Melgarejo, J. J.
    Marques, D.
    Roest, D.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (11-12): : 1123 - 1149
  • [8] Aspects of type I compactifications type I - Heterotic duality
    Angelantonj, C
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1998, 33 : S500 - S504
  • [9] Non-geometric Five-branes in Heterotic Supergravity
    Sasaki, Shin
    Yata, Masaya
    IF-YITP GR+HEP+COSMO INTERNATIONAL SYMPOSIUM VI, 2017, 883
  • [10] Non-geometric five-branes in heterotic supergravity
    Shin Sasaki
    Masaya Yata
    Journal of High Energy Physics, 2016