The Least Square Solution with the Least Norm to a System of Quaternion Matrix Equations

被引:1
|
作者
Qing-Wen Wang
Xiao-Xiao Yang
Shi-Fang Yuan
机构
[1] Shanghai University,Department of Mathematics
[2] Wuyi University,School of Mathematics and Computational Science
关键词
Least-square solution; Matrix equation; Quaternion algebra; Moore–Penrose inverse; 15A03; 15A06; 15A09; 15B33;
D O I
暂无
中图分类号
学科分类号
摘要
We in this paper derive the expression of the least square solution with the least norm to the system of generalized Sylvester quaternion matrix equations A1X=E1,XB1=E2,C1Y=E3,YD1=E4,A2XB2+C2YD2=E5,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_1X = E_1 ,\quad XB_1 = E_2, \quad C_1Y = E_3 ,\quad YD_1 = E_4,\quad A_2XB_2+C_2YD_2=E_5, \end{aligned}$$\end{document}where X, Y are unknown quaternion matrices and the others are given quaternion matrices.
引用
收藏
页码:1317 / 1325
页数:8
相关论文
共 50 条