The Least Square Solution with the Least Norm to a System of Quaternion Matrix Equations

被引:1
|
作者
Qing-Wen Wang
Xiao-Xiao Yang
Shi-Fang Yuan
机构
[1] Shanghai University,Department of Mathematics
[2] Wuyi University,School of Mathematics and Computational Science
关键词
Least-square solution; Matrix equation; Quaternion algebra; Moore–Penrose inverse; 15A03; 15A06; 15A09; 15B33;
D O I
暂无
中图分类号
学科分类号
摘要
We in this paper derive the expression of the least square solution with the least norm to the system of generalized Sylvester quaternion matrix equations A1X=E1,XB1=E2,C1Y=E3,YD1=E4,A2XB2+C2YD2=E5,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_1X = E_1 ,\quad XB_1 = E_2, \quad C_1Y = E_3 ,\quad YD_1 = E_4,\quad A_2XB_2+C_2YD_2=E_5, \end{aligned}$$\end{document}where X, Y are unknown quaternion matrices and the others are given quaternion matrices.
引用
收藏
页码:1317 / 1325
页数:8
相关论文
共 50 条
  • [21] On the minimum-norm least squares solution of the complex generalized coupled sylvester matrix equations
    Huang B.
    Ma C.
    Journal of the Franklin Institute, 2023, 360 (04) : 3330 - 3363
  • [22] Least squares skew bisymmetric solution for a kind of quaternion matrix equation
    Yuan, Shifang
    Cao, Handong
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 190 - 194
  • [23] Least Squares η - Hermitian Solution for Quaternion Matrix Equation AXB = C
    Yuan, Shifang
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2012, 307 : 300 - 305
  • [24] An iterative algorithm for the least Frobenius norm least squares solution of a class of generalized coupled Sylvester-transpose linear matrix equations
    Huang, Baohua
    Ma, Changfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 328 : 58 - 74
  • [25] A fast algorithm of the minimal norm least square solution for Loewner-type linear system
    Lu, Quan
    Tong, Qiu-juan
    Xu, Zhong
    Advances in Matrix Theory and Applications, 2006, : 234 - 237
  • [26] The Hankel Matrix Solution to a System of Quaternion Matrix Equations
    Wang, Yun
    Huang, Jingpin
    Xiong, Hao
    Zhang, Shanshan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5204 - 5209
  • [27] Least squares Hermitian solution of the complex matrix equation AXB plus CXD = E with the least norm
    Yuan, Shifang
    Liao, Anping
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (11): : 4978 - 4997
  • [28] Using Least Square Method to Find the Approximate Solution of an Overdetermined System of Linear Equations
    Farahi, M. H.
    Fahimian, H.
    Nazemi, A. R.
    JOURNAL OF MATHEMATICAL EXTENSION, 2007, 2 (1-2) : 113 - 122
  • [29] η-Hermitian Solution to a System of Quaternion Matrix Equations
    Liu, Xin
    He, Zhuo-Heng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4007 - 4027
  • [30] STP Method for Solving the Least Squares Special Solutions of Quaternion Matrix Equations
    Chen, Weihua
    Song, Caiqin
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)