The Gross–Zagier–Zhang formula over function fields

被引:0
|
作者
Congling Qiu
机构
[1] Yale University,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 384卷
关键词
Primary 11F52; Secondary 11F67; 11G09; 11G40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Gross–Zagier–Zhang formula over global function fields of arbitrary characteristics. It is an explicit formula which relates the Néron-Tate heights of CM points on abelian varieties and central derivatives of associated quadratic base change L-functions. Our proof is based on an arithmetic variant of a relative trace identity of Jacquet. This approach is proposed by Zhang. We apply our results to the Birch and Swinnerton–Dyer conjecture for abelian varieties of GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {GL}}_2$$\end{document}-type. In particular, we prove the conjecture for elliptic curves of analytic rank 1.
引用
收藏
页码:625 / 731
页数:106
相关论文
共 50 条
  • [41] Hirzebruch-Zagier classes and rational elliptic curves over quintic fields
    Fornea, Michele
    Jin, Zhaorong
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (01)
  • [42] A direct bijection for the Harer-Zagier formula
    Goulden, IP
    Nica, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (02) : 224 - 238
  • [43] Demjanenko matrix and recursion formula for relative class number over function fields
    Jung, HY
    Ahn, J
    JOURNAL OF NUMBER THEORY, 2003, 98 (01) : 55 - 66
  • [44] The Gross-Kohnen-Zagier theorem in higher dimensions
    Borcherds, RE
    DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) : 219 - 233
  • [45] Trace formula over finite fields
    Aubert, AM
    FINITE REDUCTIVE GROUPS: RELATED STRUCTURES AND REPRESENTATIONS: PROCEEDINGS OF AN INTERNATIONAL CONFERENCE HELD IN LUMINY, FRANCE, 1997, 141 : 15 - 49
  • [46] Deformations of Theta Integrals and A Conjecture of Gross-Zagier
    Bruinier, Jan H.
    Li, Yingkun
    Yang, Tonghai
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [47] Another proof of the Harer-Zagier formula
    Pittel, Boris
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [48] THETA SERIES AND FUNCTION FIELD ANALOGUE OF GROSS FORMULA
    Wei, Fu-Tsun
    Yu, Jing
    DOCUMENTA MATHEMATICA, 2011, 16 : 723 - 765
  • [49] A combinatorial proof of the Harer-Zagier formula
    Lass, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 155 - 160
  • [50] Harer-Zagier formula via Fock space
    Lewanski, D.
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (03) : 619 - 626