The Gross–Zagier–Zhang formula over function fields

被引:0
|
作者
Congling Qiu
机构
[1] Yale University,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 384卷
关键词
Primary 11F52; Secondary 11F67; 11G09; 11G40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Gross–Zagier–Zhang formula over global function fields of arbitrary characteristics. It is an explicit formula which relates the Néron-Tate heights of CM points on abelian varieties and central derivatives of associated quadratic base change L-functions. Our proof is based on an arithmetic variant of a relative trace identity of Jacquet. This approach is proposed by Zhang. We apply our results to the Birch and Swinnerton–Dyer conjecture for abelian varieties of GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {GL}}_2$$\end{document}-type. In particular, we prove the conjecture for elliptic curves of analytic rank 1.
引用
收藏
页码:625 / 731
页数:106
相关论文
共 50 条