The Gross–Zagier–Zhang formula over function fields

被引:0
|
作者
Congling Qiu
机构
[1] Yale University,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 384卷
关键词
Primary 11F52; Secondary 11F67; 11G09; 11G40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Gross–Zagier–Zhang formula over global function fields of arbitrary characteristics. It is an explicit formula which relates the Néron-Tate heights of CM points on abelian varieties and central derivatives of associated quadratic base change L-functions. Our proof is based on an arithmetic variant of a relative trace identity of Jacquet. This approach is proposed by Zhang. We apply our results to the Birch and Swinnerton–Dyer conjecture for abelian varieties of GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {GL}}_2$$\end{document}-type. In particular, we prove the conjecture for elliptic curves of analytic rank 1.
引用
收藏
页码:625 / 731
页数:106
相关论文
共 50 条
  • [1] The Gross-Zagier-Zhang formula over function fields
    Qiu, Congling
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 625 - 731
  • [2] A Gross-Zagier formula for function fields
    Rück, HG
    Tipp, U
    ALGORITHMIC ALGEBRA AND NUMBER THEORY, 1998, : 121 - 137
  • [3] A Gross-Zagier formula for quaternion algebras over totally real fields
    Goren, Eyal Z.
    Lauter, Kristin E.
    ALGEBRA & NUMBER THEORY, 2013, 7 (06) : 1405 - 1450
  • [4] A Generalization of S. Zhang's Local Gross-Zagier Formula for GL2
    Maurischat, Kathrin
    DIRECTIONS IN NUMBER THEORY, 2016, 3 : 161 - 196
  • [5] Revisiting the Gross-Zagier discriminant formula
    Ye, Dongxi
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (09) : 1801 - 1826
  • [6] The Gross-Kohnen-Zagier theorem over totally real fields
    Yuan, Xinyi
    Zhang, Shou-Wu
    Zhang, Wei
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1147 - 1162
  • [7] The universal p-adic Gross–Zagier formula
    Daniel Disegni
    Inventiones mathematicae, 2022, 230 : 509 - 649
  • [8] A Shintani-Type Formula for Gross-Stark Units over Function Fields
    Dasgupta, Samit
    Miller, Alison
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2009, 16 (03): : 415 - 440
  • [9] A rigid analytic Gross-Zagier formula and arithmetic applications
    Bertolini, M
    Darmon, H
    Edixhoven, B
    ANNALS OF MATHEMATICS, 1997, 146 (01) : 111 - 147
  • [10] AN EXPLICIT GROSS-ZAGIER FORMULA RELATED TO THE SYLVESTER CONJECTURE
    Hu, Yueke
    Shu, Jie
    Yin, Hongbo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 6905 - 6925