Lightweight dynamic attention network for single thermal image super-resolution

被引:0
|
作者
Haikun Zhang
Yueli Hu
机构
[1] Shanghai University,School of Mechatronic Engineering and Automation
来源
关键词
Single-image super-resolution; Thermal image; Lightweight convolutional neural network; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
The embedding of attention mechanism in convolutional neural networks (CNN) effectively improves the performance of single image super-resolution (SISR). However, consistent employ of attention modules at distinct depths of the CNN failed conduct the congruous gain, or even degrades performance. In this paper, we propose LDANet, a lightweight SISR network based on dynamic attention mechanism for thermal image. The dynamic attention blocks in LDANet dynamically rescale the attention and non-attention branches according to input features. Specifically, the attention branch composed of pixel- and channel-wise attention blocks to extract the most informative features in pixel domain and channel dimension, respectively. While the no-attention branch consisting of single convolutional layer for extracting features that are ignored by the attention branch. Innovatively, we adaptively and averagely weight the average pooled and standard deviation pooled features within the channel attention block to fully take advantage of the pooled features. Quantitative and qualitative experiments on three thermal image testing datasets with ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}2, ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}3 and ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}4 scale factors and plentiful scenes show that, compared with SISR models of similar size scope, the proposed LDANet accomplishes superior high-resolution thermal image reconstruction performance.
引用
下载
收藏
页码:2195 / 2206
页数:11
相关论文
共 50 条
  • [1] Lightweight dynamic attention network for single thermal image super-resolution
    Zhang, Haikun
    Hu, Yueli
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2195 - 2206
  • [2] Thermal Image Super-Resolution Based on Lightweight Dynamic Attention Network for Infrared Sensors
    Zhang, Haikun
    Hu, Yueli
    Yan, Ming
    SENSORS, 2023, 23 (21)
  • [3] A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution
    Park, Karam
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 907 - 918
  • [4] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [5] A sparse lightweight attention network for image super-resolution
    Zhang, Hongao
    Fang, Jinsheng
    Hu, Siyu
    Zeng, Kun
    VISUAL COMPUTER, 2024, 40 (02): : 1261 - 1272
  • [6] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [7] An efficient lightweight network for single image super-resolution*
    Tang, Yinggan
    Zhang, Xiang
    Zhang, Xuguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [8] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [9] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [10] Lightweight adaptive enhanced attention network for image super-resolution
    Wang, Li
    Xu, Lizhong
    Shi, Jianqiang
    Shen, Jie
    Huang, Fengcheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6513 - 6537