Lightweight dynamic attention network for single thermal image super-resolution

被引:0
|
作者
Haikun Zhang
Yueli Hu
机构
[1] Shanghai University,School of Mechatronic Engineering and Automation
来源
关键词
Single-image super-resolution; Thermal image; Lightweight convolutional neural network; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
The embedding of attention mechanism in convolutional neural networks (CNN) effectively improves the performance of single image super-resolution (SISR). However, consistent employ of attention modules at distinct depths of the CNN failed conduct the congruous gain, or even degrades performance. In this paper, we propose LDANet, a lightweight SISR network based on dynamic attention mechanism for thermal image. The dynamic attention blocks in LDANet dynamically rescale the attention and non-attention branches according to input features. Specifically, the attention branch composed of pixel- and channel-wise attention blocks to extract the most informative features in pixel domain and channel dimension, respectively. While the no-attention branch consisting of single convolutional layer for extracting features that are ignored by the attention branch. Innovatively, we adaptively and averagely weight the average pooled and standard deviation pooled features within the channel attention block to fully take advantage of the pooled features. Quantitative and qualitative experiments on three thermal image testing datasets with ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}2, ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}3 and ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}4 scale factors and plentiful scenes show that, compared with SISR models of similar size scope, the proposed LDANet accomplishes superior high-resolution thermal image reconstruction performance.
引用
下载
收藏
页码:2195 / 2206
页数:11
相关论文
共 50 条
  • [31] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [32] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [33] PYRAMID FUSION ATTENTION NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    He, Hao
    Du, Zongcai
    Li, Wenfeng
    Tang, Jie
    Wu, Gangshan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2165 - 2169
  • [34] Deep coordinate attention network for single image super-resolution
    Xie, Chao
    Zhu, Hongyu
    Fei, Yeqi
    IET IMAGE PROCESSING, 2022, 16 (01) : 273 - 284
  • [35] Fused pyramid attention network for single image super-resolution
    Chen, Shi
    Bi, Xiuping
    Zhang, Lefei
    IET IMAGE PROCESSING, 2023, 17 (06) : 1681 - 1693
  • [36] Efficient residual attention network for single image super-resolution
    Fangwei Hao
    Taiping Zhang
    Linchang Zhao
    Yuanyan Tang
    Applied Intelligence, 2022, 52 : 652 - 661
  • [37] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [38] DANS: Deep Attention Network for Single Image Super-Resolution
    Talreja, Jagrati
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2023, 11 : 84379 - 84397
  • [39] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081
  • [40] Efficient residual attention network for single image super-resolution
    Hao, Fangwei
    Zhang, Taiping
    Zhao, Linchang
    Tang, Yuanyan
    APPLIED INTELLIGENCE, 2022, 52 (01) : 652 - 661