An efficient lightweight network for single image super-resolution*

被引:6
|
作者
Tang, Yinggan [1 ,2 ]
Zhang, Xiang [2 ]
Zhang, Xuguang [3 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Intelligent Rehabil & Neuromodulat Hebei P, Qinhuangdao 066004, Hebei, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Super-resolution; Sparse; Efficiency; Lightweight; Self-attention; SUPERRESOLUTION; ACCURATE;
D O I
10.1016/j.jvcir.2023.103834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The outstanding performance of convolutional neural networks (CNNs) shown in single image super-resolution (SISR) strongly depends on network's depth, which hampers its application in low-power computing devices. In this paper, a lightweight and efficient network (LESR) is proposed for SISR by constructing the shallow feature extraction block (SFBlock), the cascaded sparse mask blocks (SMBlocks) and the feature fusion block (FFBlock). The SFBlock efficiently extracts global informative features from the original low resolution image using sparse self-attention, SMBlock skips the redundant computation in extracted features, and more meaningful information is distilled for the sequential reconstruction block by the FFBlock. In addition, a recently proposed activation function called ACON-C is used to replace the ReLU function to ease the training difficulty. Extensive experiments show that our proposed network performs better than most advanced lightweight SISR algorithms with comparable parameters and less FLOPs on benchmark database for x2/3/4 SISR.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An efficient and lightweight image super-resolution with feature network
    Zang, Yongsheng
    Zhou, Dongming
    Wang, Changcheng
    Nie, Rencan
    Guo, Yanbu
    [J]. OPTIK, 2022, 255
  • [2] A very lightweight and efficient image super-resolution network?
    Gao, Dandan
    Zhou, Dengwen
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [3] A Residual Network with Efficient Transformer for Lightweight Image Super-Resolution
    Yan, Fengqi
    Li, Shaokun
    Zhou, Zhiguo
    Shi, Yonggang
    [J]. ELECTRONICS, 2024, 13 (01)
  • [4] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    [J]. OPTIK, 2021, 239
  • [5] Lightweight Feature Fusion Network for Single Image Super-Resolution
    Yang, Wenming
    Wang, Wei
    Zhang, Xuechen
    Sun, Shuifa
    Liao, Qingmin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 538 - 542
  • [6] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211
  • [7] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    [J]. The Visual Computer, 2024, 40 : 41 - 52
  • [8] Lightweight group convolutional network for single image super-resolution
    Yang, Aiping
    Yang, Bingwang
    Ji, Zhong
    Pang, Yanwei
    Shao, Ling
    [J]. INFORMATION SCIENCES, 2020, 516 (516) : 220 - 233
  • [9] Lightweight blueprint residual network for single image super-resolution
    Hao, Fangwei
    Wu, Jiesheng
    Liang, Weiyun
    Xu, Jing
    Li, Ping
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [10] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    [J]. VISUAL COMPUTER, 2024, 40 (01): : 41 - 52