The Bargmann Transform and Windowed Fourier Localization

被引:0
|
作者
Min-Lin Lo
机构
[1] California State University,Department of Mathematics
[2] San Bernardino,undefined
来源
关键词
47B35; 42C40; 81R30; Berezin-Toeplitz operator; Bargmann isometry; windowed Fourier localization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the relationship between Gabor-Daubechies windowed Fourier localization operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ L^{w}_{\varphi } $$ \end{document} and Berezin-Toeplitz operators Tφ, using the Bargmann isometry β. For “window” w a finite linear combination of Hermite functions, and a very general class of functions φ, we prove an equivalence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta L^{w}_{\varphi } \beta ^{{ - 1}} = C^{*} M_{\varphi } C = T_{{(1 + D)\varphi }} $$ \end{document} by obtaining the exact formulas for the operator C and the linear differential operator D.
引用
收藏
页码:397 / 412
页数:15
相关论文
共 50 条
  • [41] Toeplitz Operators Associated with the Deformed Windowed Fourier Transform
    Mejjaoli, Hatem
    Shah, Firdous A.
    Sraieb, Nadia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (03)
  • [42] Windowed Fourier Transform for Noise Reduction of SAR Interferograms
    Fattahi, Heresh
    Zoej, Mohammad Javad Valadan
    Mobasheri, Mohammad Reza
    Dehghani, Maryam
    Sahebi, Mahmod Reza
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) : 418 - 422
  • [43] Windowed Fourier transform method for demodulation of carrier fringes
    Qian, KM
    OPTICAL ENGINEERING, 2004, 43 (07) : 1472 - 1473
  • [44] IMPROVING HARMONIC PHASE IMAGING BY THE WINDOWED FOURIER TRANSFORM
    Cordero-Grande, L.
    Vegas-Sanchez-Ferrero, G.
    Casaseca-de-la-Higuera, P.
    Alberola-Lopez, C.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 520 - 523
  • [45] Fringe Analysis Based On an Adaptive Windowed Fourier Transform
    Zhong, Jingang
    Huang, Yu
    Weng, Jiawen
    INTERNATIONAL CONFERENCE ON ADVANCED PHASE MEASUREMENT METHODS IN OPTICS AN IMAGING, 2010, 1236 : 135 - 140
  • [46] Uncertainty principles for windowed coupled fractional Fourier transform
    Bahri, Mawardi
    Syamsuddin, Fitriyani
    Bachtiar, Nasrullah
    Amir, Amir Kamal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (09) : 7418 - 7437
  • [47] Toeplitz Operators Associated with the Deformed Windowed Fourier Transform
    Hatem Mejjaoli
    Firdous A. Shah
    Nadia Sraieb
    Complex Analysis and Operator Theory, 2022, 16
  • [48] Windowed Bessel Fourier transform in quantum calculus and applications
    Soumaya Chefai
    Journal of Pseudo-Differential Operators and Applications, 2017, 8 : 723 - 749
  • [49] On frequency resolution of the windowed discrete Fourier transform (DFT)
    Chen, Weidong
    Yang, Shaoquan
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2000, 27 (02): : 157 - 160
  • [50] Two-Dimensional Clifford Windowed Fourier Transform
    Bahri, Mawardi
    Hitzer, Eckhard M. S.
    Adji, Sriwulan
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 93 - +