The Bargmann Transform and Windowed Fourier Localization

被引:0
|
作者
Min-Lin Lo
机构
[1] California State University,Department of Mathematics
[2] San Bernardino,undefined
来源
关键词
47B35; 42C40; 81R30; Berezin-Toeplitz operator; Bargmann isometry; windowed Fourier localization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the relationship between Gabor-Daubechies windowed Fourier localization operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ L^{w}_{\varphi } $$ \end{document} and Berezin-Toeplitz operators Tφ, using the Bargmann isometry β. For “window” w a finite linear combination of Hermite functions, and a very general class of functions φ, we prove an equivalence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta L^{w}_{\varphi } \beta ^{{ - 1}} = C^{*} M_{\varphi } C = T_{{(1 + D)\varphi }} $$ \end{document} by obtaining the exact formulas for the operator C and the linear differential operator D.
引用
收藏
页码:397 / 412
页数:15
相关论文
共 50 条
  • [31] Inversion formula for the windowed Fourier transform, II
    Sun, Xudong
    Sun, Wenchang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) : 21 - 34
  • [32] Analysis of financial indices by means of the windowed Fourier transform
    J. Tenreiro Machado
    Fernando B. Duarte
    Gonçalo Monteiro Duarte
    Signal, Image and Video Processing, 2012, 6 : 487 - 494
  • [33] Localization operators for the windowed Kontorovich Lebedev transform
    Dades, Abdelaali
    Daher, Radouan
    Tyr, Othman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (02)
  • [34] Localization operators for the windowed Kontorovich Lebedev transform
    Abdelaali Dades
    Radouan Daher
    Othman Tyr
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [35] Windowed Fourier transform profilometry based on improved S-transform
    Da, F.
    Dong, F.
    OPTICS LETTERS, 2012, 37 (17) : 3561 - 3563
  • [36] Windowed Bessel Fourier transform in quantum calculus and applications
    Chefai, Soumaya
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (04) : 723 - 749
  • [37] Analysis of financial indices by means of the windowed Fourier transform
    Machado, J. Tenreiro
    Duarte, Fernando B.
    Duarte, Goncalo Monteiro
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 487 - 494
  • [38] Uncertainty principles related to quaternionic windowed Fourier transform
    Bahri, Mawardi
    Ashino, Ryuichi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (03)
  • [39] Windowed Fourier transform for fringe pattern analysis: addendum
    Kemao, Q
    APPLIED OPTICS, 2004, 43 (17) : 3472 - 3473
  • [40] Phase Unwrapping Method Based On Windowed Fourier Transform
    He, Yanbin
    Li, Xinzhong
    Chen, Weimin
    Wen, Junsong
    MECHATRONICS AND COMPUTATIONAL MECHANICS, 2013, 307 : 321 - +