The classification of Steiner triple systems on 27 points with 3-rank 24

被引:0
|
作者
Dieter Jungnickel
Spyros S. Magliveras
Vladimir D. Tonchev
Alfred Wassermann
机构
[1] University of Augsburg,Mathematical Institute
[2] Florida Atlantic University,Department of Mathematical Sciences
[3] Michigan Technological University,Department of Mathematical Sciences
[4] University of Bayreuth,Mathematical Institute
来源
关键词
Steiner triple system; Linear code; Kirkman triple system; 05B05; 51E10; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there are exactly 2624 isomorphism classes of Steiner triple systems on 27 points having 3-rank 24, all of which are actually resolvable. More generally, all Steiner triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points having 3-rank at most 3n-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n-n$$\end{document} are resolvable. Combining this observation with the lower bound on the number of such STS(3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {STS}}(3^n)$$\end{document} recently established by two of the present authors, we obtain a strong lower bound on the number of Kirkman triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points. For instance, there are more than 1099\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{99}$$\end{document} isomorphism classes of KTS(81)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {KTS}}(81)$$\end{document}.
引用
收藏
页码:831 / 839
页数:8
相关论文
共 50 条
  • [41] Generalized Steiner Triple Systems with Group Size g = 0,3 (mod 6)
    Ge G.-N.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (4) : 561 - 568
  • [42] Classification of solvable 3-dimensional Lie triple systems
    Bouetou, TB
    Non-Associative Algebra and Its Applications, 2006, 246 : 41 - 54
  • [43] Structure of steiner triple systems S(2 m-1, 3, 2) of rank 2 m - m+2 over F2
    Zinoviev, V. A.
    Zinoviev, D. V.
    PROBLEMS OF INFORMATION TRANSMISSION, 2013, 49 (03) : 232 - 248
  • [44] A mass formula for Steiner triple systems STS(2n-1) of 2-rank 2n-n
    Tonchev, VD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (02) : 197 - 208
  • [45] On the number of Steiner triple systems S(2m-1, 3, 2) of rank 2m - m+2 over F2
    Zinoviev, D.
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2727 - 2736
  • [46] STEINER TRIPLE-SYSTEMS WITH DOUBLY TRANSITIVE AUTOMORPHISM-GROUPS - A COROLLARY TO THE CLASSIFICATION THEOREM FOR FINITE SIMPLE-GROUPS
    KEY, JD
    SHULT, EE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (01) : 105 - 110
  • [47] Translocation (3;8)(q27;q24) in two cases of triple hit lymphoma
    Motllo, Cristina
    Grau, Javier
    Junca, Jordi
    Ruiz, Neus
    Mate, Jose-Luis
    Orna, Elisa
    Navarro, Jose-Tomas
    Vives, Susana
    Sancho, Juan-Manuel
    Esteban, Daniel
    Granada, Isabel
    Feliu, Evarist
    Ribera, Josep-Maria
    Milla, Fuensanta
    CANCER GENETICS AND CYTOGENETICS, 2010, 203 (02) : 328 - 332
  • [48] Classification of Filippov Type 3 Singular Points in Planar Bimodal Piecewise Smooth Systems
    Department of Mathematics, University of Manchester, Manchester
    M13 9PL, United Kingdom
    不详
    BS8 1UB, United Kingdom
    SIAM J. Appl. Dyn. Syst., 2024, 3 (2242-2261):
  • [49] The existence of 5-sparse Steiner triple systems of order n 3 mod 6, n ∋{9,15}
    Wolfe, Adam J.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (08) : 1487 - 1503
  • [50] Vasil'ev Codes of Length n=2m and Doubling of Steiner Systems S(n, 4, 3) of a Given Rank
    Zinoviev, V.
    Zinoviev, D.
    PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (01) : 10 - 29