The classification of Steiner triple systems on 27 points with 3-rank 24

被引:0
|
作者
Dieter Jungnickel
Spyros S. Magliveras
Vladimir D. Tonchev
Alfred Wassermann
机构
[1] University of Augsburg,Mathematical Institute
[2] Florida Atlantic University,Department of Mathematical Sciences
[3] Michigan Technological University,Department of Mathematical Sciences
[4] University of Bayreuth,Mathematical Institute
来源
关键词
Steiner triple system; Linear code; Kirkman triple system; 05B05; 51E10; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there are exactly 2624 isomorphism classes of Steiner triple systems on 27 points having 3-rank 24, all of which are actually resolvable. More generally, all Steiner triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points having 3-rank at most 3n-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n-n$$\end{document} are resolvable. Combining this observation with the lower bound on the number of such STS(3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {STS}}(3^n)$$\end{document} recently established by two of the present authors, we obtain a strong lower bound on the number of Kirkman triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points. For instance, there are more than 1099\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{99}$$\end{document} isomorphism classes of KTS(81)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {KTS}}(81)$$\end{document}.
引用
收藏
页码:831 / 839
页数:8
相关论文
共 50 条