The classification of Steiner triple systems on 27 points with 3-rank 24

被引:0
|
作者
Dieter Jungnickel
Spyros S. Magliveras
Vladimir D. Tonchev
Alfred Wassermann
机构
[1] University of Augsburg,Mathematical Institute
[2] Florida Atlantic University,Department of Mathematical Sciences
[3] Michigan Technological University,Department of Mathematical Sciences
[4] University of Bayreuth,Mathematical Institute
来源
关键词
Steiner triple system; Linear code; Kirkman triple system; 05B05; 51E10; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there are exactly 2624 isomorphism classes of Steiner triple systems on 27 points having 3-rank 24, all of which are actually resolvable. More generally, all Steiner triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points having 3-rank at most 3n-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n-n$$\end{document} are resolvable. Combining this observation with the lower bound on the number of such STS(3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {STS}}(3^n)$$\end{document} recently established by two of the present authors, we obtain a strong lower bound on the number of Kirkman triple systems on 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} points. For instance, there are more than 1099\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{99}$$\end{document} isomorphism classes of KTS(81)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {KTS}}(81)$$\end{document}.
引用
收藏
页码:831 / 839
页数:8
相关论文
共 50 条
  • [1] The classification of Steiner triple systems on 27 points with 3-rank 24
    Jungnickel, Dieter
    Magliveras, Spyros S.
    Tonchev, Vladimir D.
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 831 - 839
  • [2] On the number of resolvable Steiner triple systems of small 3-rank
    Shi, Minjia
    Xu, Li
    Krotov, Denis S.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (06) : 1037 - 1046
  • [3] On the number of resolvable Steiner triple systems of small 3-rank
    Minjia Shi
    Li Xu
    Denis S. Krotov
    Designs, Codes and Cryptography, 2020, 88 : 1037 - 1046
  • [4] There are 1239 Steiner Triple Systems STS(31) of 2-rank 27
    Octavio Páez Osuna
    Designs, Codes and Cryptography, 2006, 40 : 187 - 190
  • [5] There are 1239 Steiner triple systems STS(31) of 2-rank 27
    Paez Osuna, Octavio
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (02) : 187 - 190
  • [6] ON POINTS AND TRIPLES OF STEINER TRIPLE-SYSTEMS
    SAXL, J
    ARCHIV DER MATHEMATIK, 1981, 36 (06) : 558 - 564
  • [7] Counting Steiner triple systems with classical parameters and prescribed rank
    Jungnickel, Dieter
    Tonchev, Vladimir D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 10 - 33
  • [8] The number of the non-full-rank Steiner triple systems
    Shi, Minjia
    Xu, Li
    Krotov, Denis S.
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (10) : 571 - 585
  • [9] Block-avoiding sequencings of points in Steiner triple systems
    Kreher, Donald L.
    Stinson, Douglas R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 498 - 509
  • [10] SZAMKOLOWICZ-DOYEN CLASSIFICATION OF STEINER TRIPLE SYSTEMS
    HILTON, AJW
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 34 (JAN) : 102 - 116