Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates

被引:0
|
作者
Christoph Walker
机构
[1] Leibniz Universität Hannover,Institut für Angewandte Mathematik
来源
关键词
Age structure; Nonlinear diffusion; Population model; Bifurcation; Maximal regularity; 35K55; 35K90; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [31] POSITIVE EQUILIBRIUM SOLUTIONS FOR AGE- AND SPATIALLY-STRUCTURED POPULATION MODELS
    Walker, Christoph
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1366 - 1387
  • [32] Estimation of time-varying mortality rates using continuous models for Daphnia magna
    Adoteye, Kaska
    Banks, H. T.
    Flores, Kevin B.
    LeBlanc, Gerald A.
    APPLIED MATHEMATICS LETTERS, 2015, 44 : 12 - 16
  • [33] Haar wavelet method for solving nonlinear age-structured population models
    Avazzadeh, Zakieh
    Heydari, Mohammad
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (08)
  • [34] Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example
    Odo Diekmann
    Mats Gyllenberg
    J. A. J. Metz
    Shinji Nakaoka
    Andre M. de Roos
    Journal of Mathematical Biology, 2010, 61 : 277 - 318
  • [35] Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example
    Diekmann, Odo
    Gyllenberg, Mats
    Metz, J. A. J.
    Nakaoka, Shinji
    de Roos, Andre M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (02) : 277 - 318
  • [36] An SIS sex-structured influenza A model with positive case fatality in an open population with varying size
    Safan, Muntaser
    Humadi, Bayan
    Mathematical Biosciences and Engineering, 2024, 21 (08) : 6975 - 7011
  • [37] Comparing population growth rates between census and recruitment-mortality models
    Serrouya, Robert
    Gilbert, Sophie
    McNay, R. Scott
    Mclellan, Bruce N.
    Heard, Douglas C.
    Seip, Dale R.
    Boutin, Stan
    JOURNAL OF WILDLIFE MANAGEMENT, 2017, 81 (02): : 297 - 305
  • [38] A numerical method for nonlinear age-structured population models with finite maximum age
    Angulo, O.
    Lopez-Marcos, J. C.
    Lopez-Marcos, M. A.
    Milner, F. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) : 150 - 160
  • [39] An improvement of Laguerre computational scheme for solving nonlinear age-structured population models
    Avazzadeh, Zakieh
    Heydari, Mohammad
    Yarahmadian, Shantia
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 268 - 287
  • [40] On the formulation and analysis of general deterministic structured population models II. Nonlinear theory
    Diekmann, O
    Gyllenberg, M
    Huang, H
    Kirkilionis, M
    Metz, JAJ
    Thieme, HR
    JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (02) : 157 - 189