Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates

被引:0
|
作者
Christoph Walker
机构
[1] Leibniz Universität Hannover,Institut für Angewandte Mathematik
来源
关键词
Age structure; Nonlinear diffusion; Population model; Bifurcation; Maximal regularity; 35K55; 35K90; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
引用
下载
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [21] Nonlinear Physiologically Structured Population Models with Two Internal Variables
    Kang, Hao
    Huo, Xi
    Ruan, Shigui
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 2847 - 2884
  • [22] Pitfalls to avoid in nonlinear perturbation analysis of structured population models
    McElderry, Robert M.
    Gaoue, Orou G.
    POPULATION ECOLOGY, 2022, 64 (04) : 365 - 372
  • [23] Hopf bifurcation of nonlinear incidence rates SIR epidemiological models with stage structure
    Zhonghua LU
    e-mail: lschen@math08.math.ac.cn
    Xi’an Statistic College
    e-mail: lzh
    Communications in Nonlinear Science and Numerical Simulation, 2001, (04) : 205 - 209
  • [24] Hopf bifurcation of nonlinear incidence rates SIR epidemiological models with stage structure
    Lu, Zhonghua
    Liu, Xianning
    Chen, Lansun
    Communications in Nonlinear Science and Numerical Simulation, 2001, 6 (04) : 205 - 209
  • [25] Numerical continuation of equilibria of physiologically structured population models. I. Theory
    Kirkilionis, MA
    Diekmann, O
    Lisser, B
    Nool, M
    Sommeijer, B
    De Roos, AM
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (06): : 1101 - 1127
  • [26] Modeling time-varying natural mortality in size-structured assessment models
    Cao, Jie
    Chen, Yong
    FISHERIES RESEARCH, 2022, 250
  • [27] Variational iteration method for nonlinear age-structured population models
    Li, Xiuying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) : 2177 - 2181
  • [28] Numerical integration of fully nonlinear size-structured population models
    Angulo, O
    López-Marcos, JC
    APPLIED NUMERICAL MATHEMATICS, 2004, 50 (3-4) : 291 - 327
  • [29] Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors
    Zhang, YC
    Zamamiri, AM
    Henson, MA
    Hjortso, MA
    JOURNAL OF PROCESS CONTROL, 2002, 12 (06) : 721 - 734
  • [30] A Lyapunov-Schmidt method for detecting backward bifurcation in age-structured population models
    Martcheva, Maia
    Inaba, Hisashi
    JOURNAL OF BIOLOGICAL DYNAMICS, 2020, 14 (01) : 543 - 565